四川省绵阳市名校联盟2024届八年级数学第二学期期末考试模拟试题含解析_第1页
四川省绵阳市名校联盟2024届八年级数学第二学期期末考试模拟试题含解析_第2页
四川省绵阳市名校联盟2024届八年级数学第二学期期末考试模拟试题含解析_第3页
四川省绵阳市名校联盟2024届八年级数学第二学期期末考试模拟试题含解析_第4页
四川省绵阳市名校联盟2024届八年级数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省绵阳市名校联盟2024届八年级数学第二学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在20km的环湖越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如右上图所示,根据图中提供的信息,下列说法中错误的有()①出发后1小时,两人行程均为10km;②出发后1.5小时,甲的行程比乙多2km;③两人相遇前,甲的速度小于乙的速度;④甲比乙先到达终点.A.1个 B.2个 C.3个 D.4个2.以下列长度为边长的三角形是直角三角形的是()A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,93.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.矩形 B.直角梯形 C.菱形 D.正方形4.点P(-4,2)关于原点对称点的坐标P’(-2,-2)则等于()A.6 B.-6 C.2 D.-25.如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是()A.DE=DF B.BD=FD C.∠1=∠2 D.AB=AC6.如图,四边形ABCD是平行四边形,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠A=25°,∠B=65° B.∠A:∠B:∠C=2:3:5C.a:b:c=:: D.a=6,b=10,c=128.下面计算正确的是()A. B. C. D.9.某学习小组8名同学的地理成绩是35、50、45、42、36、38、40、42(单位:分),这组数据的平均数和众数分别为()A.41、42 B.41、41 C.36、42 D.36、4110.对于反比例函数,下列说法中不正确的是()A.图像经过点(1.-2)B.图像分布在第二第四象限C.x>0时,y随x增大而增大D.若点A()B()在图像上,若,则11.下列各式的计算中,正确的是()A. B. C. D.12.若a+|a|=0,则化简的结果为()A.1 B.−1 C.1−2a D.2a−1二、填空题(每题4分,共24分)13.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为_____.14.已知点M(m,3)在直线上,则m=______.15.如图,直线与的交点坐标为,当时,则的取值范围是__________.16.正方形,,按如图所示放置,点、、在直线上,点、、在x轴上,则的坐标是________.17.如图,将正方形放在平面直角坐标系中,是坐标原点,点的坐标为,则点的坐标为__________.18.已知关于的方程的一个解为1,则它的另一个解是__________.三、解答题(共78分)19.(8分)为了倡导“全民阅读”,某校为调査了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成统计图表如下:根据以上信息,解答下列问题(1)共抽样调查了名学生,a=;(2)在扇形统计图中,“D”对应扇形的圆心角为;(3)若该校有2000名学生,请估计全校学生中家庭藏书超过60本的人数.20.(8分)如图,已知中,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从向方向运动,到达点后,点也停止运动,设点运动的时间为秒.(1)求点停止运动时,的长;(2)两点在运动过程中,点是点关于直线的对称点,是否存在时间,使四边形为菱形?若存在,求出此时的值;若不存在,请说明理由.(3)两点在运动过程中,求使与相似的时间的值.21.(8分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF是菱形.22.(10分)如图,在平行四边形ABCD中,点E、F在对角线BD上,且BF=DE(1)求证:△ADE≌△CBF.(2)若AE=3,AD=4,∠DAE=90°,该判断当BE的长度为多少时,四边形AECF为菱形,并说明理由.23.(10分)A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡,从A城运往C、D两乡运肥料的费用分别是每吨20元和25元,从B城运往C、D两乡运肥料的费用分别为每吨15元和24元,现在C乡需要肥料240吨,D乡需要肥料260吨,设A城运往C乡的肥料量为x吨,总运费为y元.(1)写出总运费y元关于x的之间的关系式;(2)当总费用为10200元,求从A、B城分别调运C、D两乡各多少吨?(3)怎样调运化肥,可使总运费最少?最少运费是多少?24.(10分)如图:在ΔABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30∘,求AD25.(12分)已知:如图,在ABCD中,延长线AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.26.电话计费问题,下表中有两种移动电话计费方式:温馨揭示:方式一:月使用费固定收(月收费:38元/月);主叫不超限定时间不再收费(80分钟以内,包括80分钟);主叫超时部分加收超时费(超过部分0.15元/);被叫免费。方式二:月使用费0元(无月租费);主叫限定时间0分钟;主叫每分钟0.35元/;被叫免费。(1)设一个月内用移动电话主叫时间为,方式一计费元,方式二计费元。写出和关于的函数关系式。(2)在平面直角坐标系中画出(1)中的两个函数图象,记两函数图象交点为点,则点的坐标为_____________________(直接写出坐标,并在图中标出点)。(3)根据(2)中函数图象,请直接写出如何根据每月主叫时间选择省钱的计费方式。

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据图像所给信息,结合函数图像的实际意义判断即可.【详解】解:由图像可得出发后1小时,两人行程均为10km,①正确;甲的速度始终为,乙在内,速度为,在内,速度为,所以出发后1.5小时,甲的行程为,而乙的行程为,,所以出发后1.5小时,甲的行程比乙多3km,②错误;相遇前,在内,乙的速度大于甲的速度,在内,乙的速度小于甲的速度,③错误;由图像知,甲2小时后到达终点,而乙到达终点花费的时间比甲的长,所以甲比乙先到达终点,④正确.错误的说法有2个.故答案为:B【点睛】本题是根据函数图像获取信息,明确函数图像所表达的实际意义是解题的关键.2、C【解析】

利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A、因为52+62≠72,所以三条线段不能组成直角三角形;B、因为72+82≠92,所以三条线段不能组成直角三角形;C、因为62+82=102,所以三条线段能组成直角三角形;D、因为52+72≠92,所以三条线段不能组成直角三角形;故选:C.【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.3、A【解析】

解:如图,AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.

∵E、F、G、H分别为各边的中点,

∴EF∥AC,GH∥AC,EH∥BD,FG∥BD(三角形的中位线平行于第三边),

∴四边形EFGH是平行四边形(两组对边分别平行的四边形是平行四边形),

∵AC⊥BD,EF∥AC,EH∥BD,

∴∠EMO=∠ENO=90°,

∴四边形EMON是矩形(有三个角是直角的四边形是矩形),

∴∠MEN=90°,

∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).

故选:A.4、A【解析】

根据关于原点对称的点的坐标特点进行求解.【详解】解:∵点P(a-4,2)关于原点对称的点的坐标P′(-2,-2),∴a-4=2,∴a=6,故选:A.【点睛】本题考查了关于原点对称的点的坐标特点,关键是熟记关于原点对称的点的横纵坐标都变为相反数.5、C【解析】分析:如图,由已知条件判断AD平分∠BAC即可解决问题.详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠1.故选C.点睛:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.6、D【解析】

可根据对角线相等的平行四边形是矩形证明四边形ABCD是矩形.【详解】解:A、AB=CD,当ABCD是平行四边形时也成立,故不合符题意;B、AD=BC,当ABCD是平行四边形时也成立,故不合符题意;C、AB=BC,当ABCD是菱形时也成立,故不合符题意;D、AC=BD,对角线相等的平行四边形是矩形,符合题意;故选:D.【点睛】此题主要考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.7、D【解析】

根据勾股定理的逆定理和三角形的内角和定理进行判定即可.【详解】解:A、∵∠A=25°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=90°,∴△ABC是直角三角形,故A选项正确;B、∵∠A:∠B:∠C=2:3:5,∴,∴△ABC是直角三角形;故B选项正确;C、∵a:b:c=::,∴设a=k,b=k,c=k,∴a2+b2=5k2=c2,∴△ABC是直角三角形;故C选项正确;D、∵62+102≠122,∴△ABC不是直角三角形,故D选项错误.故选:D.【点睛】本题主要考查直角三角形的判定方法,熟练掌握勾股定理的逆定理、三角形的内角和定理是解题的关键.8、B【解析】

根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A.3+不是同类项无法进行运算,故A选项错误;B.=3,故B选项正确;C.,故C选项错误;D.,故D选项错误;故选B.【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9、A【解析】

根据众数和平均数的概念求解.【详解】这组数据中42出现的次数最多,故众数为42,平均数为:35+50+45+42+36+38+40+428故选A.【点睛】此题考查众数,算术平均数,解题关键在于掌握其定义.10、D【解析】

根据反比例函数图象上点的坐标特征及反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】A.把点(1,-2)代入得:-2=-2,故该选项正确,不符合题意,B.∵k=-2<0,∴函数图像分布在第二第四象限,故该选项正确,不符合题意,C.∵k=-2<0,∴x>0时,y随x增大而增大,故该选项正确,不符合题意,D.∵反比例函数的图象在二、四象限,∴x<0时,y>0,x>0时,y<0,∴x1<0<x2时,y1>y2,故该选项错误,符合题意,故选D.【点睛】本题考查反比例函数图象上点的坐标特征及反比例函数的性质,对于反比例函数,当k>0时,图象在一、三象限,在各象限内,y随x的增大而减小;当k<0时,图象在二、四象限,在各象限内,y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.11、B【解析】

根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A、应为x4÷x4=1,故本选项错误;B、a2•a2=a4,正确;C、应为(a3)2=a6,故本选项错误;D、a2与a3不是同类项,不能合并,故本选项错误.故选:B.【点睛】本题主要考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,很容易混淆,一定要记准法则才能做题.12、C【解析】

根据指数幂的运算法则直接化简即可.【详解】∵a+|a|=0,∴a⩽0.∴=,==1-a-a=1-2a故选:C.【点睛】此题考查根式与分数指数幂的互化及其化简运算,掌握运算法则是解题关键二、填空题(每题4分,共24分)13、1【解析】

根据勾股定理求出BC,根据线段垂直平分线得出AE=CE,求出△ABE的周长=AB+BC,代入求出即可.【详解】解:在△ABC中,∠B=90°,AB=3,AC=5,由勾股定理得:BC=4,∵线段AC的垂直平分线DE,∴AE=EC,∴△ABE的周长为AB+BE+AE=AB+BE+CE=AB+BC=3+4=1,故答案为1.【点睛】本题主要考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是本题的关键.14、2【解析】

把点M代入即可求解.【详解】把点M代入,即3=2m-1,解得m=2,故填:2.【点睛】此题主要考查一次函数,解题的关键是熟知坐标与函数的关系.15、【解析】

在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【详解】解:∵直线l1:y1=k1x+a与直线l2:y2=k2x+b的交点坐标是(1,2),

∴当x=1时,y1=y2=2.

而当y1≤y2时,即时,x≤1.

故答案为:x≤1.【点睛】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.16、【解析】

先求出A1、A2、A3的坐标,找出规律,即可得出的坐标.【详解】解:∵直线y=x+1和y轴交于A1,

∴A1的坐标(0,1),即OA1=1,

∵四边形C1OA1B1是正方形,

∴OC1=OA1=1,

把x=1代入y=x+1得:y=2,

∴A2的坐标为(1,2),

同理,A3的坐标为(3,4),

∴An的坐标为(2n-1-1,2n-1),

∴的坐标是,

故答案为:.【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质,通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.17、【解析】

过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,根据同角的余角相等求出∠OEI=∠GOH,再利用“角角边”证明△EOI和△OGH全等,根据全等三角形对应边相等可得OH=EI,EI=OI,然后根据点G在第二象限写出坐标即可.【详解】解:过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,如图所示:∵四边形OEFG是正方形,∴OE=OG,∠EOG=90°,∴∠GOH+∠EOI=90°,又∵∠OEI+∠EOI=90°,∴∠OEI=∠GOH,在△EOI和△OGH中,,∴△EOI≌△OGH(AAS),∴OH=EI=3,GH=OI=2,∵点G在第二象限,∴点G的坐标为(-3,2).故答案为(-3,2).【点睛】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.18、【解析】

根据一元二次方程解的定义,将x=1代入原方程列出关于k的方程,通过解方程求得k值;最后根据根与系数的关系求得方程的另一根.【详解】解:将x=1代入关于x的方程x2+kx−1=0,

得:1+k−1=0

解得:k=2,

设方程的另一个根为a,

则1+a=−2,

解得:a=−1,

故方程的另一个根为−1.

故答案是:−1.【点睛】本题考查的是一元二次方程的解集根与系数的关系.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.三、解答题(共78分)19、(1)200,64;(2)126°;(3)1200人.【解析】

(1)共抽样调查了50÷25%=200(名),200﹣(16+50+70)=64(名);(2)“D”对应扇形的圆心角360°×=126°;(3)估计全校学生中家庭藏书超过60本的人数为(50+70)=1200(人).【详解】解:(1)50÷25%=200(名),200﹣(16+50+70)=64(名)故答案为:200,64;(2)“D”对应扇形的圆心角360°×=126°.故答案为:126°;(3)(50+70)=1200(人),答:估计全校学生中家庭藏书超过60本的人数为1200人.【点睛】本题考查了扇形统计图的相关知识,正确读懂图表是解题的关键.20、(1)(2)(3)或【解析】

(1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.(3)分两种情形:如图3-1中,当∠APQ=90°时,如图3-2中,当∠AQP=90°时,分别构建方程即可解决问题.【详解】(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB==10,点Q运动到点A时,t==5,∴AP=5,PC=1,在Rt△PBC中,PB=.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.∵四边形PQCE是菱形,∴PC⊥EQ,PK=KC,∵∠QKC=∠QDC=∠DCK=90°,∴四边形QDCK是矩形,∴DQ=CK,∴,解得t=.∴t=s时,四边形PQCE是菱形.(3)如图2中,当∠APQ=90°时,∵∠APQ=∠C=90°,∴PQ∥BC,∴,∴,∴.如图3中,当∠AQP=90°时,∵△AQP∽△ACB,∴,∴,∴,综上所述,或s时,△APQ是直角三角形.【点睛】本题属于相似形综合题,考查了菱形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.21、(1)见解析;(2)见解析.【解析】

(1)利用平行线的性质及中点的定义,可利用AAS证得结论;

(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;【详解】证明:(1)∵AF∥BC∴∠AFE=∠DBE∵E是AD中点,∴AE=DE在△AEF和DEB中∴△AEF≌△DEB(AAS)(2)在Rt△ABC中,D是BC的中点,所以,AD=BD=CD又AF∥DB,且AF=DB,所以,AF∥DC,且AF=DC,所以,四边形ADCF是菱形.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键.22、(1)证明见解析;(2)BE的长度为时,四边形AECF为菱形.【解析】

(1)由平行四边形的性质可得∠ADE=∠CBF,AD=BC,利用SAS即可证明△ADE≌△CBF;(2)连接AC,设BE=x,AC、EF相交于O,利用勾股定理可求出DE的长,即可用x表示出OE和OB的长,由菱形的性质可得AC⊥EF,即可证明平行四边形ABCD是菱形,可得AB=AD=4,在Rt△AOB和Rt△AOE中,分别利用勾股定理表示出OA2,列方程求出x的值即可得答案.【详解】(1)∵平行四边形ABCD,∴AD//BC,∴∠∠ADE=∠CBF,AD=BC,又∵BF=DE,∴△ADE≌△CBF.(2)BE的长度为时,四边形AECF为菱形.理由如下:连接AC,设BE=x,AC、EF相交于O,∵AE=3,AD=4,∠DAE=90°,∴BF=DE==5,∴OE=,OB=,∵四边形AECF为菱形,∴AC⊥EF,∴平行四边形ABCD是菱形,∴AB=AD=4,在Rt△AOB和Rt△AOE中,OA2=AB2-OB2=AE2-OE2,即42-()2=32-()2,解得:x=.∴BE的长度为时,四边形AECF为菱形.【点睛】本题考查了全等三角形的判定、菱形的判定与性质,根据对角线互相垂直的平行四边形是菱形,得出平行四边形ABCD是菱形,进而求出AB的长是解题关键.23、(1)y=4x+10040(0≤x≤200);(2)从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.(3)从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.【解析】

(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和(60+x)吨,然后根据总运费和运输量的关系列出方程式,就可以求出解析式;(2)将y=10200代入(1)中的函数关系式可求得x的值;(3)根据(1)的解析式,由一次函数的性质就可以求出结论.【详解】(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和[260-(200-x)]=(60+x)吨.由总运费与各运输量的关系可知,反映y与x之间的函数关系为y=20x+25(200-x)+15(240-x)+24(60+x)化简,得y=4x+10040(0≤x≤200)(2)将y=10200代入得:4x+10040=10200,解得:x=40,∴200-x=200-40=160,240-x=200,60+x=100,∴从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.(3)∵y=4x+10040,∴k=4>0,∴y随x的增大而增大,∴当x=0时,y最小=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论