![2024届山西省大同矿区六校联考中考数学全真模拟试卷含解析_第1页](http://file4.renrendoc.com/view12/M05/22/17/wKhkGWYaLGKATCkMAAG2QMVAc5g188.jpg)
![2024届山西省大同矿区六校联考中考数学全真模拟试卷含解析_第2页](http://file4.renrendoc.com/view12/M05/22/17/wKhkGWYaLGKATCkMAAG2QMVAc5g1882.jpg)
![2024届山西省大同矿区六校联考中考数学全真模拟试卷含解析_第3页](http://file4.renrendoc.com/view12/M05/22/17/wKhkGWYaLGKATCkMAAG2QMVAc5g1883.jpg)
![2024届山西省大同矿区六校联考中考数学全真模拟试卷含解析_第4页](http://file4.renrendoc.com/view12/M05/22/17/wKhkGWYaLGKATCkMAAG2QMVAc5g1884.jpg)
![2024届山西省大同矿区六校联考中考数学全真模拟试卷含解析_第5页](http://file4.renrendoc.com/view12/M05/22/17/wKhkGWYaLGKATCkMAAG2QMVAc5g1885.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省大同矿区六校联考中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.122.要使分式有意义,则x的取值范围是()A.x= B.x> C.x< D.x≠3.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.其中正确的是()A.①②③ B.①④⑤ C.①②④ D.③④⑤4.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为()A.6 B.8C.10 D.125.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π6.定义:若点P(a,b)在函数y=1x的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=1x的一个“派生函数”.例如:点(2,12)在函数y=1x的图象上,则函数y=2x2+(1)存在函数y=1x(2)函数y=1xA.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题7.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是()A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度8.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣39.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或1710.圆锥的底面半径为2,母线长为4,则它的侧面积为()A.8π B.16π
C.4π D.4π二、填空题(本大题共6个小题,每小题3分,共18分)11.已知且,则=__________.12.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有_____个三角形(用含字母n的代数式表示).13.比较大小:_______3(填“”或“”或“”)14.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为______m.(精确到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)15.分解因式:mx2﹣4m=_____.16.计算:______.三、解答题(共8题,共72分)17.(8分)下面是一位同学的一道作图题:已知线段a、b、c(如图),求作线段x,使他的作法如下:(1)以点O为端点画射线,.(2)在上依次截取,.(3)在上截取.(4)联结,过点B作,交于点D.所以:线段________就是所求的线段x.①试将结论补完整②这位同学作图的依据是________③如果,,,试用向量表示向量.18.(8分)如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.请填空完成下列证明.证明:如图,作Rt△ABC的斜边上的中线CD,则CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等边三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.19.(8分)先化简,再求值÷(x﹣),其中x=.20.(8分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:1+121.(8分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.(运用)如图2,在平面直坐标系xOy中,已知A(2,3),B(﹣2,﹣3)两点.(1)C(4,32),D(4,22),E(4,12(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tanα2=n(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为;开私家车的人数m=;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?23.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?24.计算:(1)(2)
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.故选B.考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质2、D【解析】
本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.【详解】∵3x−7≠0,∴x≠.故选D.【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3、B【解析】
由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>1,得到a﹣b+c>1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.【详解】解:①∵抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),∴抛物线与x轴的另一交点坐标为(1,1),∴抛物线过原点,结论①正确;②∵当x=﹣1时,y>1,∴a﹣b+c>1,结论②错误;③当x<1时,y随x增大而减小,③错误;④抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,且抛物线过原点,∴c=1,∴b=﹣4a,c=1,∴4a+b+c=1,当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤∵抛物线的顶点坐标为(2,b),∴ax2+bx+c=b时,b2﹣4ac=1,⑤正确;综上所述,正确的结论有:①④⑤.故选B.【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.4、D【解析】
根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.5、B【解析】
直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.6、C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax2+bx经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.考点:(1)命题与定理;(2)新定义型7、C【解析】
Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可【详解】∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,∴DO=BC=2,CO=3,∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;故选:C.【点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化8、B【解析】
把代入方程组得:,解得:,所以a−2b=−2×()=2.故选B.9、D【解析】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D正确.考点:三角形三边关系;分情况讨论的数学思想10、A【解析】
解:底面半径为2,底面周长=4π,侧面积=×4π×4=8π,故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可.详解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.12、4n﹣1【解析】
分别数出图、图、图中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去如图中三角形的个数为按照这个规律即可求出第n各图形中有多少三角形.【详解】分别数出图、图、图中的三角形的个数,图中三角形的个数为;图中三角形的个数为;图中三角形的个数为;可以发现,第几个图形中三角形的个数就是4与几的乘积减去1.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为.故答案为.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.13、>.【解析】
先利用估值的方法先得到≈3.4,再进行比较即可.【详解】解:∵≈3.4,3.4>3.∴>3.故答案为:>.【点睛】本题考查了实数的比较大小,对进行合理估值是解题的关键.14、40.0【解析】
首先过点A作AE∥BD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.【详解】过点A作AE∥BD,交CD于点E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四边形ABDE是矩形,∴AE=BD=20m,DE=AB=0.8m,在Rt△ACE中,∠CAE=63°,∴CE=AE•tan63°=20×1.96≈39.2(m),∴CD=CE+DE=39.2+0.8=40.0(m).答:筒仓CD的高约40.0m,故答案为:40.0【点睛】此题考查解直角三角形的应用−仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.15、m(x+2)(x﹣2)【解析】
提取公因式法和公式法相结合因式分解即可.【详解】原式故答案为【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.16、【解析】原式==.故答案为:.三、解答题(共8题,共72分)17、①CD;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③.【解析】
①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证得,即,从而知.【详解】①∵,∴OA:AB=OC:CD,∵,,,,∴线段就是所求的线段x,故答案为:②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③∵、,且,∴,∴,即,∴,∴.【点睛】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.18、直角三角形斜边上的中线等于斜边的一半;1.【解析】
根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.【详解】证明:如图,作Rt△ABC的斜边上的中线CD,则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半),∵AC=AB,∴AC=CD=AD即△ACD是等边三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.19、6【解析】【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.【详解】原式===,当x=,原式==6.【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.20、1【解析】解:(1+==取x=2时,原式=121、(1)C(2)n2(3)b<﹣735且b≠﹣2【解析】
(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=2根据外角性质可知∠A=∠A′=α2根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B′(10,﹣3),∴直线AB′解析式为:y=﹣34当x=4时,y=32故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴AGBH=GP∴mn=23,即m=23∵∠APB=α,AP=AP′,∴∠A=∠A′=α2在Rt△AGP中,tanα2=(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N∵A(2,3),B(﹣2,﹣3)∴OA=OB=7∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=3OB=∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴AMON∴20N∴ON=23,NQ=3,∴Q点坐标为(3,﹣23)设直线BQ解析式为y=kx+b将B、Q坐标代入得-3解得k=-3∴直线BQ的解析式为:y=﹣35设直线AQ的解析式为:y=mx+n,将A、Q两点代入3=2m+n解得m=-33∴直线AQ的解析式为:y=﹣33x+7若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣73若点P与点A重合,则直线PQ与直线AQ重合,此时,b=73又∵y=ax+b(a≠0),且点P位于AB右下方,∴b<﹣735且b≠﹣23或b>【点睛】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.22、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:36÷45%=80人;开私家车的人数m=80×25%=20;扇形统计图中“骑自行车”的圆心角为360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.试题解析:解:(1)80,20,72.(2)骑自行车的人数为:80×20%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,1580
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专利购买合同范本
- 中药材种植技术服务合同
- 个人理财顾问合同「样本」
- 二手教练车交易合同模板
- 三方资产转让合同标准范本
- 上海市租赁住房租赁合同
- 二手房装修改造合同简单范本
- 个人向公司借款合同范例
- 不可撤销合同担保协议范本大全
- 个人购房借款合同范本
- 领导干部的情绪管理教学课件
- 初中英语-Unit2 My dream job(writing)教学课件设计
- 供货方案及时间计划安排
- 唐山动物园景观规划设计方案
- 中国版梅尼埃病诊断指南解读
- 创业投资管理知到章节答案智慧树2023年武汉科技大学
- 暨南大学《经济学》考博历年真题详解(宏观经济学部分)
- GB/T 8014.1-2005铝及铝合金阳极氧化氧化膜厚度的测量方法第1部分:测量原则
- eNSP简介及操作课件
- 运动技能学习与控制课件第七章运动技能的协调控制
- 节后复工吊篮验收表格
评论
0/150
提交评论