




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
单调性与导数的关系:设函数y=f
(x)在区间(a,b)内的导数为f′(x).如果f′(x)>0,如果f′(x)<0,如果f′(x)=0,如果f(x)在(a,b)内为增函数,如果f(x)在(a,b)内为减函数,则f(x)在(a,b)内为单调递增;则f(x)在(a,b)内为单调递减.则f(x)在(a,b)内为常数函数;则f′(x)≥0在(a,b)内恒成立;则f′(x)≤0在(a,b)内恒成立.
苏轼在《题西林壁》中这样写道:“横看成岭侧成峰,远近高低各不同”,描述的就是江西庐山的高低起伏,错落有致。在数学上,这种现象如何来刻画呢?在群山之中,各个山峰的顶端,虽然不一定是群山的最高处,但它却是其附近的最高点函数的极大(小)值如图观察,函数y=f
(x)在x=a、b、c、d、e等点处的函数值与这些点附近的函数值有什么关系?y=f
(x)在这些点处的导数值是多少?在这些点附近,y=f
(x)的导数的符号有什么规律?xyOabcde如图观察,函数y=f
(x)在x=a、b、c、d、e等点处的函数值与这些点附近的函数值有什么关系?y=f
(x)在这些点处的导数值是多少?在这些点附近,y=f
(x)的导数的符号有什么规律?xyOabcde我们把a叫做函数y=f(x)的极小值点,
f(a)叫做函数y=f(x)的极小值;b叫做函数y=f(x)的极大值点,
f(b)叫做函数y=f(x)的极大值.极值点与极值的定义:极小值点、极大值点统称为极值点,极小值和极大值统称为极值(extremum).极值点x0为极大值点x0为极小值点极值f(x0)为极大值f(x0)为极小值条件f'(x0)=0x0附近左侧f'(x0)>0x0附近右侧f'(x0)<0x0附近左侧f'(x0)<0x0附近右侧f'(x0)>0x0附近f(x)<f(x0)x0附近f(x)>f(x0)图像极值点左右两侧的导数值异号极值定义的理解问题3:一个函数的极小值一定小于极大值吗?问题1:一个函数的极大值或极小值是唯一的吗?上问题4:极值点可能是区间端点吗?不一定不一定不可能问题2:任何一个函数一定有极大值或极小值吗?上述图,不一定极值反映了函数在某点附近的大小,刻画了函数的局部性质.问题5:若f'(x0)=0,则x0一定是极值点吗?不一定练习1:下图是函数y=f(x)的图象,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点.abxyx1Ox2x3x4x5x6练习2.下图是导函数y=f′(x)的图象,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点.abxyx1Ox2x3x4x5x6例1.解:x(-∞,-2)-2(-2,2)2(2,+∞)f′(x)f(x)xyO-22
如何判断f
(x0)是极大值或是极小值?f
(x)<0yxOx1aby=f(x)极大值点两侧极小值点两侧f
(x)<0f
(x)>0f
(x)>0x2
xx0左侧
x0x0右侧f′(x)
f(x)
xx0左侧
x0x0右侧f′(x)
f(x)增f′(x)>0f′(x)=0f′(x)<0极大值减f′(x)<0f′(x)=0增减极小值f′(x)>0左正右负为极大,左负右正为极小xf'(x)f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 入党积极分子理论测试复习试题含答案
- 山西省重点中学协作体2017届高三第一次适应性考试政治试卷(含答案)
- 鲁教版英语七下Unit 5 Can you come to my party Period5 (单元整体+课时教学设计)
- 高中地理综合知识试题及答案
- 体育营销与企业品牌的结合实践
- 中小企业税收筹划与优化策略
- 一站式陪诊师试题及答案
- 2025至2030年中国万用活化酸盐行业发展研究报告
- 2025至2030年中国一闪性牙科器械市场分析及竞争策略研究报告001
- 2025至2030年中国一层板行业投资前景及策略咨询报告
- (2024年)治疗肩周炎课件
- 《新闻评论》课件 第四章 新闻评论的基本类型
- 基因工程病毒疫苗-课件
- 超市产品质量与风险防控培训
- 中考英语语法填空总复习-教学课件(共22张PPT)
- 机场安检防爆培训课件模板
- 一到六年级语文词语表人教版
- 2024年浙江杭州地铁运营分公司招聘笔试参考题库含答案解析
- 2024年九省联考新高考 数学试卷(含答案解析)
- 学生营养膳食
- 《质量检验培训》课件
评论
0/150
提交评论