




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省漳州市平和县数学八年级下册期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某青年排球队12名队员的年龄情况如下表所示:这12名队员的平均年龄是()A.18岁 B.19岁 C.20岁 D.21岁2.对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是()x-10123y2581214A.5 B.8 C.12 D.143.如图,已知中,,,将绕点顺时针方向旋转到的位置,连接,则的长为()A. B. C. D.4.如图,∠1=∠2,DE∥AC,则图中的相似三角形有()A.2对 B.3对 C.4对 D.5对5.抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.6.已知反比例函数y=-,下列结论中不正确的是()A.图象经过点(3,-2) B.图象在第二、四象限C.当x>0时,y随着x的增大而增大 D.当x<0时,y随着x的增大而减小7.若的两根分别是与5,则多项式可以分解为()A. B.C. D.8.某校篮球队队员的年龄分布情况如下表,则该校篮球队队员的平均年龄为()A.13岁 B.13.5岁 C.13.7岁 D.14岁9.已知,四边形ABCD的对角线AC⊥BD,E,F,G,H分别是边AB,BC,CD,DA的中点,那么四边形EFGH是()A.平行四边形 B.矩形 C.菱形 D.正方形10.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1二、填空题(每小题3分,共24分)11.将代入反比例函数中,所得函数值记为,又将代入函数中,所得函数值记为,再将代入函数中,所得函数值记为,如此继续下去,则________.12.以正方形ABCD一边AB为边作等边三角形ABE,则∠CED=_____.13.已知关于x的方程x2-2ax+1=0有两个相等的实数根,则a=____.14.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.15.如图,已知中,,,,是的垂直平分线,交于点,连接,则___16.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的解集为____________.17.如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.18.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为_______.三、解答题(共66分)19.(10分)如图,中任意一点经平移后对应点为,将作同样的平移得到,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:(1)画出,并写出点D、E、F的坐标..(2)若与关于原点O成中心对称,直接写出点D的对应点的坐标.20.(6分)四川汶川大地震牵动了三百多万滨州人民的心,全市广大中学生纷纷伸出了援助之手,为抗震救灾踊跃捐款。滨州市振兴中学某班的学生对本校学生自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据。下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人。(1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,估计全校学生捐款多少元?21.(6分)如图,,平分,且交于点,平分,且交于点,与相交于点,连接(1)求证:四边形是菱形.(2)若,,求的长.22.(8分)一次函数的图像经过,两点.(1)求的值;(2)判断点是否在该函数的图像上.23.(8分)如图,在平面直角坐标系中,△ABC的顶点A、B分别落在x轴、y轴的正半轴上,顶点C在第一象限,BC与x轴平行.已知BC=2,△ABC的面积为1.(1)求点C的坐标.(2)将△ABC绕点C顺时针旋转90°,△ABC旋转到△A1B1C的位置,求经过点B1的反比例函数关系式.24.(8分)“赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表组别成绩x(分)频数(人数)第1组60≤x<684第2组68≤x<768第3组76≤x<8412第4组84≤x<92a第5组92≤x<10010第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:(1)填空:a=所抽取的40名学生比赛成绩的中位数是(2)请将频数分布直方图补充完整(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?25.(10分)已知:y=y1﹣y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时y=1.(1)求y关于x的函数关系式.(2)求x=﹣时,y的值.26.(10分)如图,在正方形网格中,△TAB的顶点坐标分别为T(1,1)、A(2,3)、B(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将△TAB放大为原来的3倍,放大后点A、B的对应点分别为A'、B',画出△TA'B':(2)写出点A'、B'的坐标:A'()、B'();(3)在(1)中,若C(a,b)为线段AB上任一点,则变化后点C的对应点C'的坐标为().
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据平均数的公式求解即可.【详解】这12名队员的平均年龄是(岁),故选:C.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.2、C【解析】
经过观察5组自变量和相应的函数值得(-1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,(2,12)不符合,即可判定.【详解】∵(-1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,当x=2时,y=11≠12∴这个计算有误的函数值是12,故选C.【点睛】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.3、B【解析】
连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:如图,连接BB′,
∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
∴AB=AB′,∠BAB′=60°,
∴△ABB′是等边三角形,
∴AB=BB′,
在△ABC′和△B′BC′中,,
∴△ABC′≌△B′BC′(SSS),
∴∠ABC′=∠B′BC′,
延长BC′交AB′于D,
则BD⊥AB′,
∵∠C=90°,,
∴AB==4,
∴BD=,
C′D=2,
∴BC′=BD-C′D=.
故选B.【点睛】本题考查旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键.4、C【解析】
由∠1=∠2,DE∥AC,利用有两角对应相等的三角形相似解答即可.【详解】∵DE∥AC,∴△BED∽△BAC,∠EDA=∠DAC,∵∠1=∠2,∴△ADE∽△CAD,∵DE∥AC,∴∠2=∠EDB,∵∠1=∠2,∴∠1=∠EDB,∵∠B=∠B,∴△BDE∽△BAD,∴△ABD∽△CBA,故选:C.【点睛】本题考查了相似三角形的判定,注意掌握有两角对应相等的三角形相似定理的应用,注意数形结合思想的应用.5、A【解析】
试题分析:A、由二次函数的图象可知a>0,﹣>0,可得b<0,此时直线y=ax+b经过一,三,四象限,故A正确;B、由二次函数的图象可知a>0,﹣>0,可得b<0,此时直线y=ax+b经过一,三,四象限,故B错误;C、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、三象限,故C错误;D、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、三象限,故D错误;正确的只有A.故选A.考点:1.二次函数的图象;2.一次函数的图象.6、D【解析】
利用反比例函数图象上点的坐标特征对A进行判断;根据反比例函数的性质对B、C、D进行判断.【详解】解:A、当x=3时,y=-=-2,所以点(3,-2)在函数y=-的图象上,所以A选项的结论正确;B、反比例函数y=-分布在第二、四象限,所以B选项的结论正确;C、当x>0时,y随着x的增大而增大,所以C选项的结论正确;D、当x<0时,y随着x的增大而增大,所以D选项的结论不正确.故选:D.【点睛】本题考查了反比例函数的性质:反比例函数y=-(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.7、C【解析】
先提取公因式2,再根据已知分解即可.【详解】∵x2-2px+3q=0的两根分别是-3与5,
∴2x2-4px+6q=2(x2-2px+3p)
=2(x+3)(x-5),
故选:C.【点睛】考查了解一元二次方程和分解因式,注意:能够根据方程的解分解因式是解此题的关键.8、C【解析】
根据加权平均数的计算公式计算可得.【详解】解:该校篮球队队员的平均年龄为:(岁)故答案为:C.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.9、B【解析】
根据中位线定义得出EF=HG,EF∥HG,证明四边形EFGH为平行四边形,再根据矩形的判定法则即可判定【详解】∵E,F分别是边AB,BC的中点,∴EF=AC,EF∥AC,同理,HG=AC,HG∥AC,∴EF=HG,EF∥HG,∴四边形EFGH为平行四边形,∵F,G分别是边BC,CD的中点,∴FG∥BD,∴∠FGH=90°,∴平行四边形EFGH为矩形,故选:B.【点睛】此题考查三角形中位线的性质,矩形的判定,解题关键在于利用中位线的性质进行解答10、B【解析】
可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.二、填空题(每小题3分,共24分)11、2【解析】
可依次求出y的值,寻找y值的变化规律,根据规律确定的值.【详解】解:将代入反比例函数中得;将代入函数得;将代入函数得;将代入函数得由以上计算可知:y的值每三次重复一下故y的值在重复670次后又计算了2次,所以故答案为:2【点睛】本题属于反比例函数的求值规律题,找准函数值的变化规律是解题的关键.12、30°或150°.【解析】
等边△ABE的顶点E可能在正方形外部,也可能在正方形内部,因此分两种情况画出图形进行求解即可.【详解】分两种情况:①当点E在正方形ABCD外侧时,如图1所示:∵四边形ABCD是正方形,△ABE是等边三角形∴∠ABC=90°,BC=BE=AB,∠ABE=∠AEB=60°,∴∠CBE=∠CBA+∠ABE=90°+60°=150°,∵BC=BE,∴∠BCE═∠BEC=15°,同理可得∠EDA═∠DEA=15°,∴∠CED=∠AEB﹣∠CEB﹣∠DEA=60°﹣15°﹣15°=30°;②当点E在正方形ABCD内侧时,如图2所示:∵∠EAB=∠AEB=60°,∠BAC=90°,∴∠CAE=30°,∵AC=AE,∴∠ACE=∠AEC=75°,同理∠DEB=∠EDB=75°,∴∠CED=360°﹣60°﹣75°﹣75°=150°;综上所述:∠CED为30°或150°;故答案为:30°或150°.【点睛】本题考查了正方形的性质及等边三角形的性质,正确地进行分类,熟练掌握相关的性质是解题的关键.13、【解析】
根据方程的系数结合根的判别式△=0,可得出关于a的一元二次方程,解之即可得出结论.【详解】解:∵关于x的方程x2-2ax+1=0有两个相等的实数根,∴△=(-2a)2-4×1×1=0,解得:a=±1.故答案为:±1.【点睛】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的两个实数根”是解题的关键.14、【解析】分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=cm.故答案为.点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.15、5【解析】
由是的垂直平分线可得AD=CD,可得∠CAD=∠ACD,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B,可得CD=BD,可知CD=BD=AD=【详解】解:∵是的垂直平分线∴AD=CD∴∠CAD=∠ACD∵,,又∵∴∴∠ACB=90°∵∠ACD+∠DCB=90°,∠CAB+∠B=90°∴∠DCB=∠B∴CD=BD∴CD=BD=AD=故答案为5【点睛】本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键.16、<-1【解析】
根据图象求出不等式的解集即可.【详解】由图象可得当时,直线y=-x+m的图象在直线y=nx+4n(n≠0)的图象的上方故可得关于x的不等式-x+m>nx+4n的解集为故答案为:<-1.【点睛】本题考查了解一元一次不等式的问题,掌握用图象法解一元一次不等式是解题的关键.17、【解析】
过P作PH⊥OY于点H,构建含30°角的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,由∠EPH=30°,可得EH的长,从而可得a+2b与OH的关系,确认OH取最大值时点H的位置,可得结论.【详解】解:过P作PH⊥OY于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,∠EPH=30°,∴EH=EP=a,∴a+2b=2()=2(EH+EO)=2OH,∴当P在点B处时,OH的值最大,此时,OC=OA=1,AC==BC,CH=,∴OH=OC+CH=1+=,此时a+2b的最大值=2×=5.故答案为5.【点睛】本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a+2b的最大值就是确定OH的最大值,即可解决问题.18、1【解析】
根据勾股定理的几何意义:得到S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,求解即可.【详解】由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C.∵正方形B,C,D的面积依次为4,3,9,∴S正方形A+4=9﹣3,∴S正方形A=1.故答案为1.【点睛】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.三、解答题(共66分)19、(1)D(0,4),E(2,2),F(3,5),画图见解析;(2)(0,-4)【解析】
(1)根据平面直角坐标系中点的坐标的平移规律求解可得;(2)根据关于原点中心对称的规律“横纵坐标都互为相反数”即可求得.【详解】解:(1)如图,△DEF即为所求,点D的坐标是,即(0,4);点E的坐标是,即(2,2);点F的坐标为,即(3,5);(2)点D(0,4)关于原点中心对称的的坐标为(0,-4).【点睛】本题主要考查了平移变换以及旋转变换,正确得出对应点位置是解题关键.20、(1)捐款人数共有78人;(2)众数为25(元);中位数为25(元),(3)全校共捐款34200元【解析】
(1)各长方形的高度之比为3:4:5:8:6,就是已知捐款人数的比是3:4:5:8:6,求一共调查多少人可以根据捐款25元和30元的学生一共42人.就可以求出调查的总人数;
(2)众数就是出现次数最多的数,中位数就是按大小顺序排列处于中间位置的两个数的平均数;
(3)估计全校学生捐款数,就可以先求出这些人的学生的平均捐款数,可以近似等于全校学生的平均捐款数.【详解】解:(1)设捐款30元的有6x人,则8x+6x=42,得x=3。则捐款人数共有3x+4x+5x+8x+6x=78(人);(2)由图象可知:众数为25(元);由于本组数据的个数为78,按大小顺序排列处于中间位置的两个数都是25(元),故中位数为25(元);(3)全校共捐款(9×10+12×15+15×20+24×25+18×30)×=34200(元).故答案为:(1)捐款人数共有78人;(2)众数为25(元);中位数为25(元);(3)全校共捐款34200元.【点睛】本题考查平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.并且本题考查了总体与样本的关系,可以用样本估计总体.21、(1)见解析;(2)AD=.【解析】
(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出结论;(2)根据菱形的性质可得∠AOD=90°,OD=3,然后在Rt△AOD中利用勾股定理列方程求出AO即可解决问题.【详解】(1)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴平行四边形四边形ABCD是菱形;(2)∵四边形ABCD是菱形,BD=6,∴∠AOD=90°,OD=3,∵,∴AD=2AO,在Rt△AOD中,AD2=AO2+OD2,即4AO2=AO2+9,∴AO=,∴AD=2AO=.【点睛】本题主要考查了平行线的性质、角平分线定义、等腰三角形的判定、平行四边形的判定、菱形的判定和性质、含30度直角三角形的性质以及勾股定理,熟练掌握菱形的判定定理和性质定理是解题的关键.22、(1)k=-2,b=8;(2)在图象上.【解析】
(1)利用待定系数法即可得到k,b的值;(2)将点P的坐标代入函数解析式,如满足函数解析式则点在函数图象上,否则不在函数图象上.【详解】(1)把A(3,2),B(1,6)代入得:,解得:∴(2)当时,∴P(,10)在的图象上【点睛】本题考查了待定系数法求一次函数的解析式、函数图象上点的坐标与函数关系式的关系.利用待定系数法求函数解析式的一般步骤:(1)先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);(2)将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.23、(1)C(2,1);(2)经过点B1的反比例函数为y=.【解析】
(1)过点C作CD⊥x轴于点D,BC与x轴平行可知CD⊥BC,即可求出CD的长,进而得出C点坐标;(2)由图形旋转的性质得出CB1的长,进而可得出B1的坐标,设经过点B1(2,3)的反比例函数为,把B1的坐标代入即可得出k的值,从而得出反比例函数的解析式.【详解】解:(1)作CD⊥x轴于D.
∵BC与x轴平行,∴S△ABC=BC•CD,∵BC=2,S△ABC=1,∴CD=1,∴C(2,1);(2)∵由旋转的性质可知CB1=CB=2,∴B1(2,3).
设经过点B1(2,3)的反比例函数为,∴3=,
解得k=6,∴经过点B1的反比例函数为y=.【点睛】本题考查的是反比例函数综合题,涉及到图形旋转的性质及三角形的面积公式、用待定系数法求反比例函数的解析式,涉及面较广,难度适中.24、(1)6,78;(2)见解析;(3)240名【解析】
(1)根据题意和频数分布表中的数据可以求得a的值和这组数据的中位数;(2)根据(1)中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装配式行业追溯软件
- 安徽省定远县育才中学2024-2025学年高三第一次综合测试数学试题试卷含解析
- 大连工业大学《建筑设计1》2023-2024学年第二学期期末试卷
- 辽宁省辽阳市太子河区2025届数学四年级第二学期期末经典试题含解析
- 江西航空职业技术学院《工程数学概率论》2023-2024学年第一学期期末试卷
- 北京信息科技大学《工程管理导论》2023-2024学年第二学期期末试卷
- 长春金融高等专科学校《钢结构设计与施工》2023-2024学年第二学期期末试卷
- 吉林省四平一中等2024-2025学年高三下期末考试英语试题(B卷)含解析
- 2025年哈三中高三下学期开学考试数学试题文试题含解析
- 江苏省无锡市宜兴市周铁区市级名校2024-2025学年初三中考模拟冲刺卷(提优卷)(四)化学试题含解析
- 基于SWOT分析的义乌市现代物流业发展研究
- 基于自适应滤波对音频信号的处理详解
- 油浸式变压器工艺文件汇编
- 并网前设备电气试验继电保护整定通讯联调完整资料
- 南方科技大学机试样题练习南方科技大学样卷
- 电子公章模板
- 北京广安门中医院门诊楼层分布图
- 法定代表人登记表
- 钻孔灌注桩施工组织设计
- 足球比赛登记表
- 《三字经》全文打印版
评论
0/150
提交评论