北京市怀柔区九级2024年八年级下册数学期末监测模拟试题含解析_第1页
北京市怀柔区九级2024年八年级下册数学期末监测模拟试题含解析_第2页
北京市怀柔区九级2024年八年级下册数学期末监测模拟试题含解析_第3页
北京市怀柔区九级2024年八年级下册数学期末监测模拟试题含解析_第4页
北京市怀柔区九级2024年八年级下册数学期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市怀柔区九级2024年八年级下册数学期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A.5 B.3 C.2.4 D.2.52.如图,已知直线与相交于点(2,),若,则的取值范围是()A. B. C. D.3.如果关于的一元二次方程有实数根,那么的取值范围是()A. B. C. D.且4.已知,则的值为()A.2x5 B.—2 C.52x D.25.下列调查中,适合普查的事件是()A.调查华为手机的使用寿命vB.调查市九年级学生的心理健康情况C.调查你班学生打网络游戏的情况D.调查中央电视台《中国舆论场》的节目收视率6.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的面积比为()A.1:2 B.1:3 C.1:4 D.1:167.已知正比例函数y=﹣2x的图象经过点(a,2),则a的值为()A. B.﹣1 C.﹣ D.﹣48.下列图形中,是轴对称图形的有()①正方形;②菱形;③矩形;④平行四边形;⑤等腰三角形;⑥直角三角形A.6个 B.5个 C.4个 D.3个9.如图,平行四边形ABCD中,AE平分∠BAD,若CE=4cm,AD=5cm,则平行四边形ABCD的周长是()A.25cm B.20cm C.28cm D.30cm10.如图,PA、PB分别与⊙O相切于点A、B,若∠P=50°,则∠C的值是()A.50° B.55° C.60° D.65°二、填空题(每小题3分,共24分)11.若恒成立,则A+B=____.12.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________

13.一次函数与的图象如图所示,则不等式kx+b<x+a的解集为_____.14.已知Rt△ABC,∠ABC=90°,小明按如下步骤作图,①以A为圆心,BC长为半径作弧,以C为圆心,AB长为半径作弧,两弧相交于点D;②连接DA,DC,则四边形ABCD为___________.15.已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式:_____.16.如图所示,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=_______.17.如图所示,在矩形ABCD中,DE⊥AC于E,∠ADE:∠EDC=3:2,则∠BDE的度数是_____.18.分解因式:3a2﹣12=___.三、解答题(共66分)19.(10分)如图,已知正方形,点、分别在边、上,若,判断、的关系并证明.20.(6分)如图,在矩形ABCD中,,点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是,连接PQ、AQ、设点P、Q运动的时间为ts.当t为何值时,四边形ABQP是矩形;当t为何值时,四边形AQCP是菱形.21.(6分)在正方形网格中,点A、B、C都是格点,仅用无刻度的直尺按下列要求作图.(1)在图1中,作线段的垂直平分线;(2)在图2中,作的角平分线.22.(8分)如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.(1)求证:DP=CG;(2)判断△PQR的形状,请说明理由.23.(8分)移动营业厅推出两种移动电话计费方式:方案一,月租费用15元/元,本地通话费用0.2元/分钟,方案二,月租费用0元/元,本地通话费用0.3元/分钟.(1)以x表示每个月的通话时间(单位:分钟),y表示每个月的电话费用(单位:元),分别表示出两种电话计费方式的函数表达式;(2)问当每个月的通话时间为300分钟时,采用那种电话计费方式比较合算?24.(8分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系式.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为______km;图中点C的实际意义为:______;慢车的速度为______,快车的速度为______;(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;(3)若在第一列快车与慢车相遇时,第二列车从乙地出发驶往甲地,速度与第一列快车相同,请直接写出第二列快车出发多长时间,与慢车相距200km.25.(10分)A、B两城相距900千米,一辆客车从A城开往B城,车速为每小时80千米,半小时后一辆出租车从B城开往A城,车速为每小时120千米.设客车出发时间为t(小时)(1)若客车、出租车距A城的距离分别为y1、y2,写出y1、y2关于t的函数关系式;(2)若两车相距100千米时,求时间t;(3)已知客车和出租车在服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案,方案一:继续乘坐出租车到C城,C城距D处60千米,加油后立刻返回B城,出租车加油时间忽略不计;方案二:在D处换乘客车返回B城,试通过计算,分析小王选择哪种方式能更快到达B城?26.(10分)已知:AC是菱形ABCD的对角线,且AC=BC.(1)如图①,点P是△ABC的一个动点,将△ABP绕着点B旋转得到△CBE.①求证:△PBE是等边三角形;②若BC=5,CE=4,PC=3,求∠PCE的度数;(2)连结BD交AC于点O,点E在OD上且DE=3,AD=4,点G是△ADE内的一个动点如图②,连结AG,EG,DG,求AG+EG+DG的最小值.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据矩形的性质得出∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,根据线段垂直平分线性质得出AE=CE,在Rt△CDE中,由勾股定理得出CE2=CD2+DE2,代入求出即可.【详解】如图,连接EC,∵在矩形ABCD中,AB=4,BC=8,∴∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,∵OE⊥AC,∴AE=CE,在Rt△CDE中,由勾股定理得:CE2=CD2+DE2,即AE2=42+(8−AE)2,解得:AE=5,故选A.【点睛】此题考查线段垂直平分线的性质,解题关键在于作辅助线.2、B【解析】试题解析:根据题意当x>1时,若y1>y1.故选B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.3、D【解析】

利用一元二次方程的定义和判别式的意义得到k≠0且△=(-3)2-4×k×(-1)≥0,即可得出答案.【详解】解:方程为一元二次方程,.方程有实数的解,,.综合得且.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4、C【解析】

结合1x2,根据绝对值和二次根式的进行计算,即可得到答案.【详解】因为1x2,所以==52x.故选择C.【点睛】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.5、C【解析】试题解析:A、调查华为手机的使用寿命适合抽样调查;B、调查市九年级学生的心理健康情况适合抽样调查;C、调查你班学生打网络游戏的情况适合普查;D、调查中央电视台《中国舆论场》的节目收视率适合抽样调查,故选C.6、D【解析】

直接根据相似三角形的性质即可得出结论.【详解】解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,∴△ABC与△DEF的面积比=(14)2=1:16故答案为:D【点睛】本题考查的是相似三角形的性质,熟知相似三角形的面积的比等于相似比的平方是解答此题的关键.7、B【解析】

把点(a,2)代入y=﹣2x得到关于a的一元一次方程,解之即可.【详解】解:把点(a,2)代入y=﹣2x得:2=﹣2a,解得:a=﹣1,故选:B.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.8、C【解析】

根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:①正方形,是轴对称图形;②菱形,是轴对称图形;③矩形,是轴对称图形;④平行四边形,不是轴对称图形;⑤等腰三角形,是轴对称图形;⑥直角三角形,不一定,是轴对称图形,故轴对称图形共4个.故选:C.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.9、C【解析】

只要证明AD=DE=5cm,即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=5cm,CD=AB,∴∠EAB=∠AED,∵∠EAB=∠EAD,∴∠DEA=∠DAE,∴AD=DE=5cm,∵EC=4cm,∴AB=DC=9cm,∴四边形ABCD的周长=2(5+9)=28(cm),故选C.【点睛】本题考查平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10、D【解析】

连接OA、OB,由已知的PA、PB与圆O分别相切于点A、B,根据切线的性质得到OA⊥AP,OB⊥PB,从而得到∠OAP=∠OBP=90°,然后由已知的∠P的度数,根据四边形的内角和为360°,求出∠AOB的度数,最后根据同弧所对的圆周角等于它所对圆心角度数的一半即可得到∠C的度数.【详解】解:连接OA、OB,

∵PA、PB与圆O分别相切于点A、B,

∴OA⊥AP,OB⊥PB,

∴∠OAP=∠OBP=90°,又∠P=50°,

∴∠AOB=360°-90°-90°-50°=130°,

又∵∠ACB和∠AOB分别是弧AB所对的圆周角和圆心角,

∴∠C=∠AOB=×130°=65°.

故选:D.【点睛】此题考查了切线的性质,以及圆周角定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题,同时要求学生掌握同弧所对的圆周角等于所对圆心角的一半.二、填空题(每小题3分,共24分)11、2.【解析】

根据异分母分式加减法法则将进行变形,继而由原等式恒成立得到关于A、B的方程组,解方程组即可得.【详解】,又∵∴,解得,∴A+B=2,故答案为:2.【点睛】本题考查了分式的加减法,恒等式的性质,解二元一次方程组,得到关于A、B的方程组是解题的关键.12、【解析】

根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.【详解】解:∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点,∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP×BC=AB×AC,∴AP×BC=AB×AC,在Rt△ABC中,由勾股定理,得BC==10,∵AB=6,AC=8,∴10AP=6×8,∴AP=∴AM=,故答案为:.考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式13、x>1【解析】

利用函数图象,写出直线在直线下方所对应的自变量的范围即可.【详解】解:根据图象得,当x>1时,kx+b<x+a.故答案为x>1.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线在直线下方所对应的所有的点的横坐标所构成的集合.数型结合是解题的关键.14、矩形【解析】

直接利用小明的作图方法得出四边形ABCD是平行四边形,进而利用矩形的判定方法得出答案.【详解】解:根据小明的作图方法可知:AD=BC,AB=DC,∠B=90°,∵AD=BC,AB=DC,

∴四边形ABCD是平行四边形,

∵∠B=90°,

∴平行四边形ABCD是矩形.

故答案为:矩形.【点睛】本题主要考查了复杂作图,正确掌握平行四边形的判定方法和矩形的判定方法是解题关键.15、【解析】试题解析:∵一次函数y=kx+b的图象交y轴于正半轴,∴b>0,∵y随x的增大而减小,∴k<0,例如y=-x+1(答案不唯一,k<0且b>0即可).考点:一次函数图象与系数的关系.16、【解析】解:∵四边形ABCD为正方形,∴∠ABC=90°.∵△ABP绕点B顺时针方向旋转能与△CBP′重合,∴∠PBP′=∠ABC=90°,PB=P′B=2,∴△PBP′为等腰直角三角形,∴PP′=PB=.故答案为.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等腰直角三角形性质.17、18°【解析】

根据矩形的性质及角度的关系即可求解.【详解】∵,∠ADC=90°,∴∠EDC=36°,∵∴∠DCE=54°,∵CO=DO,∴∠ODC=∠DCE=54°,∴=∠ODC-∠EDC=18°【点睛】此题主要考查矩形的性质,解题的关键是熟知继续对角线互相平分且相等.18、3(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).三、解答题(共66分)19、且.证明见解析.【解析】

先证明,得到及,再证得即可.【详解】且.证明如下.在正方形中,在和中∴∴又∵∴∴∴∴且【点睛】本题考查了正方形的性质及全等三角形的判定和性质,熟练掌握相关性质是解题的关键.20、当时,四边形ABQP为矩形;当时,四边形AQCP为菱形.

【解析】

当四边形ABQP是矩形时,,据此求得t的值;当四边形AQCP是菱形时,,列方程求得运动的时间t;【详解】由已知可得,,在矩形ABCD中,,,当时,四边形ABQP为矩形,,得故当时,四边形ABQP为矩形.由可知,四边形AQCP为平行四边形当时,四边形AQCP为菱形即时,四边形AQCP为菱形,解得,故当时,四边形AQCP为菱形.【点睛】本题考查了菱形、矩形的判定与性质解决此题注意结合方程的思想解题.21、见解析.【解析】

(1)直接利用矩形的性质得出AB的中点,再利用AB为底得出等腰三角形进而得出答案;(2)借助网格利用等腰三角形的性质得出答案.【详解】(1)如图所示:直线CD即为所求;(2)如图所示:射线BD即为所求.【点睛】此题主要考查了应用设计与作图,正确借助网格分析是解题关键.22、(1)证明见解析;(2)△PQR为等腰三角形,理由见解析.【解析】

(1)正方形对角线AC是对角的角平分线,可以证明△ADP≌△DCG,即可求证DP=CG.(2)由(1)的结论可以证明△CEQ≌△CEG,进而证明∠PQR=∠QPR.故△PQR为等腰三角形.【详解】(1)证明:在正方形ABCD中,AD=CD,∠ADP=∠DCG=90°,∠CDG+∠ADH=90°,∵DH⊥AP,∴∠DAH+∠ADH=90°,∴∠CDG=∠DAH,∴△ADP≌△DCG,∵DP,CG为全等三角形的对应边,∴DP=CG.(2)△PQR为等腰三角形.∵∠QPR=∠DPA,∠PQR=∠CQE,CQ=DP,由(1)的结论可知∴CQ=CG,∵∠QCE=∠GCE,CE=CE,∴△CEQ≌△CEG,即∠CQE=∠CGE,∴∠PQR=∠CGE,∵∠QPR=∠DPA,∴∠PQR=∠QPR,所以△PQR为等腰三角形.23、(1)方案一中通话费用关于时间的函数关系式为y=15+0.2x,(x≥0);方案二中通话费用关于时间的函数关系式为y=0.3x,(x≥0);(2)采用方案一电话计费方式比较合算.【解析】试题分析:(1)根据“方案一费用=月租+通话时间×每分钟通话费用,方案二的费用=通话时间×每分钟通话费用”可列出函数解析式;

(2)根据(1)中函数解析式,分别计算出x=300时的函数值,即可得出答案.试题解析:(1)根据题意知,方案一中通话费用关于时间的函数关系式为y=15+0.2x,(x≥0);方案二中通话费用关于时间的函数关系式为y=0.3x,(x≥0).(2)当x=300时,方案一的费用y=15+0.2×300=75(元),方案二的费用y=0.3×300=90(元),∴采用方案一电话计费方式比较合算.点睛:本题主要考查一次函数的应用,根据方案中所描述的计费方式得出总费用的相等关系是解题的关键.24、(1)960;当慢车行驶6h时,快车到达乙地;80km/h;160km/h;(2)线段BC所表示的y与x之间的函数关系式为y=240x-960,自变量x的取值范围是4≤x≤6;(3)第二列快车出发1.5h,与慢车相距200km.【解析】

(1)x=0时两车之间的距离即为两地间的距离,根据横坐标和两车之间的距离增加变慢解答,分别利用速度=路程÷时间列式计算即可得解;

(2)求出相遇的时间得到点B的坐标,再求出两车间的距离,得到点C的坐标,然后设线段BC的解析式为y=kx+b,利用待定系数法求一次函数解析式解答;

(3)设第二列快车出发a小时两车相距200km,然后分相遇前与相遇后相距200km两种情况列出方程求解即可.【详解】解:(1)由图象可知,甲、乙两地间的距离是960km;图中点C的实际意义是:当慢车行驶6h时,快车到达乙地;慢车速度是:960÷12=80km/h,快车速度是:960÷6=160km/h;故答案为:960;当慢车行驶6h时,快车到达乙地;80km/h;160km/h;(2)根据题意,两车行驶960km相遇,所用时间=4h,所以,B点的坐标为(4,0),2小时两车相距2×(160+80)=480km,所以,点C的坐标为(6,480),设线段BC的解析式为y=kx+b,则,解得k=240,b=-960,所以,线段BC所表示的y与x之间的函数关系式为y=240x-960,自变量x的取值范围是4≤x≤6;(3)设第二列快车出发a小时两车相距200km,分两种情况,①若是第二列快车还没追上慢车,相遇前,则4×80+80a-160a=200,解得a=1.5,②若是第二列快车追上慢车以后再超过慢车,则160a-(4×80+80a)=200,解得a=6.5,∵快车到达甲地仅需要6小时,∴a=6.5不符合题意,舍去,综上所述,第二列快车出发1.5h,与慢车相距200km.【点睛】本题考查了一次函数的应用,待定系数法求一次函数解析式,相遇问题,追击问题,综合性较强,(3)要注意分情况讨论并考虑快车到达甲地的时间是6h,这也是本题容易出错的地方.25、(1)y1=80t,y2=﹣120t+960;(2)两车相距100千米时,时间为4.3小时或5.3小时;(3)选择方案一能更快到达B城,理由见解析【解析】

(1)根据路程=速度×时间,即可得出y1、y2关于t的函数关系式;

(2)分两种情况讨论:①y2-y1=100;②y1-y2=100,据此列方程解答即可;

(3)先算出客车和出租车在服务站D处相遇的时间,再分别求出方案一、方案二所需的时间进行比较即可.【详解】(1)由题意得y1=80ty2=900﹣120(t﹣0.5)=﹣120t+960(2)如果两车相距100千米,分两种情况:①y2﹣y1=100,即﹣120t+960﹣80t=100解得t=4.3②y1﹣y2=100,即80t﹣(﹣120t+960)=100解得t=5.3所以,两车相距100千米时,时间为4.3小时或5.3小时.(3)如果两车相遇,即y1=y2,80t=﹣120t+960,解得t=4.8此时AD=80×4.8=384(千米),BD=900﹣384=516(千米)方案一:t1=(2×60+516)÷120=5.3(小时)方案二:t2=516÷80=6.45(小时)∵t2>t1∴方案一更快答:小王选择方案一能更快到达B城.【点睛】本题考查了一元一次方程的应用以及一次函数的应用,解题的关键根据数量关系找出方程(或函数关系式).本题属于中档题,难度不大,但较繁

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论