




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省广饶经济开发区乐安中学2024年八年级下册数学期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列方程中,是一元二次方程的为()A. B. C. D.2.电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到电视节目的区域就越广.电视塔高(单位:)与电视节目信号的传播半径(单位:)之间存在近似关系,其中是地球半径.如果两个电视塔的高分别是,,那么它们的传播半径之比是,则式子化简为()A. B. C. D.3.正十边形的每一个内角的度数为()A.120∘ B.135∘ C.1444.一次函数y=2x–6的图象不经过第()象限.A.一B.二C.三D.四5.甲车行驶40km与乙车行使30km所用的时间相同,已知甲车比乙车每小时多行驶15km.设甲车的速度为xkm/h,依题意,下列所列方程正确的是()A.= B.= C.= D.=6.下列各式的计算中,正确的是()A. B. C. D.7.如图,菱形中,点、分别是、的中点,若,,则的长为()A. B. C. D.8.如图,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面点A有一只蚂蚁,它想吃到上底面上与点A相对的点B的食物,需要爬行的最短路程是(π取3)()A.10cm B.12m C.14cm D.15cm9.已知一次函数y=ax+b(a、b为常数且a≠0)的图象经过点(1,3)和(0,-2),则a-b的值为()A.-1 B.-3 C.3 D.710.某机械厂七月份生产零件50万个,计划八、九月份共生产零件万个,设八、九月份平均每月的增长率为x,那么x满足的方程是A. B.C. D.二、填空题(每小题3分,共24分)11.我校八年一班甲、乙两名同学10次投篮命中的平均数均为7,方差=1.45,=2.3,教练想从中选一名成绩较稳定的同学加入校篮球队,那么应选_____.12.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是_____.13.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.14.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为___________。15.如图,平行四边形的对角线相交于点,且,平行四边形的周长为8,则的周长为______.16.已知m是一元二次方程的一个根,则代数式的值是_____17.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为______.18.在平面直角坐标系xOy中,已知点A1,1,B-1,1,如果以A,B,C,O为顶点的四边形是平行四边形,那么满足条件的所有点C三、解答题(共66分)19.(10分)已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.(1)如图(1)AB∥EF,BC∥DE,∠1与∠2的关系是:____________.(2)如图(2)AB∥EF,BC∥DE,∠1与∠2的关系是:____________(3)经过上述证明,我们可以得到一个真命题:如果_________,那么____________.(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?20.(6分)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为____________;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.21.(6分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E,若DE=DC=5,AE=2EM.(1)求证:ΔAED≅ΔMBA;(2)求BM的长(结果用根式表示).22.(8分)如图,过点A(0,3)的一次函数y1=kx+b(k≠0)的图象与正比例函数y2=2x的图象相交于点B,且点B的横坐标是1.(1)求点B的坐标及k、b的值;(2)若该一次函数的图象与x轴交于D点,求△BOD的面积(3)当y1≤y2时,自变量x的取值范围为.23.(8分)在正方形ABCD中,E是△ABD内的点,EB=EC.(1)如图1,若EB=BC,求∠EBD的度数;(2)如图2,EC与BD交于点F,连接AE,若,试探究线段FC与BE之间的等量关系,并说明理由.24.(8分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.(发现证明)小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(类比引申)如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.(探究应用)如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)25.(10分)如图,在平行四边形ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)证明:AE⊥BF;(2)证明:DF=CE.26.(10分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据一元二次方程的概念逐一进行判断即可得.【详解】A.,当a=0时,不是一元二次方程,故不符合题意;B.,是一元二次方程,符合题意;C.,不是整式方程,故不符合题意;D.,整理得:2+x=0,不是一元二次方程,故不符合题意,故选B.【点睛】本题考查了一元二次方程的定义,熟练掌握“只含一个未知数,并且含有未知数的项的次数最高为2次的整式方程是一元二次方程”是解题的关键.2、D【解析】
乘以分母的有理化因式即可完成化简.【详解】解:.故选D.【点睛】本题考查了二次根式的应用,了解二次根式的有理化因式是解答本题的关键,难度不大.3、C【解析】
利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【详解】解:∵一个十边形的每个外角都相等,
∴十边形的一个外角为360÷10=36°.
∴每个内角的度数为180°-36°=144°;
故选:C.【点睛】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360度.多边形的内角与它的外角互为邻补角.4、B【解析】分析:根据一次函数图象与系数的关系的关系解答即可.详解:∵2>0,-6<0,∴一次函数y=2x–6的图象经过一、三、四象限,不经过第二象限.故选B.点睛:本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.5、A【解析】
设甲车的速度为xkm/h,则乙车的速度为(x-15)km/h,根据时间=路程÷速度结合甲车行驶40km与乙车行使30km所用的时间相同,即可得出关于x的分式方程,此题得解.【详解】设甲车的速度为xkm/h,则乙车的速度为(x﹣15)km/h,根据题意得:=.故选A.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.6、B【解析】
根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A、应为x4÷x4=1,故本选项错误;B、a2•a2=a4,正确;C、应为(a3)2=a6,故本选项错误;D、a2与a3不是同类项,不能合并,故本选项错误.故选:B.【点睛】本题主要考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,很容易混淆,一定要记准法则才能做题.7、A【解析】
由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO,由勾股定理可求BO=4,可得BD=8,由三角形中位线定理可求EF的长【详解】解:如图,连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=3,BO=DO,∴,∴BD=2BO=8,∵点E、F分别是AB、AD的中点,∴EF=BD=4,故选:A.【点睛】本题考查了菱形的性质,三角形中位线定理,本题中根据勾股定理求OB的值是解题的关键.8、D【解析】
要想求得最短路程,首先要把A和B展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即3π≈9,矩形的宽是圆柱的高1.根据两点之间线段最短,知最短路程是矩形的对角线AB的长,即AB==15厘米.故选:D.【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算.9、D【解析】将点(0,-2)代入该一次函数的解析式,得,即b=-2.将点(1,3)代入该一次函数的解析式,得,∵b=-2,∴a=5.∴a-b=5-(-2)=7.故本题应选D.10、C【解析】
主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【详解】依题意得八、九月份的产量为10(1+x)、10(1+x)2,∴10(1+x)+10(1+x)2=111.1.故选C.【点睛】本题考查了由实际问题抽象出一元二次方程.增长率问题的一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.二、填空题(每小题3分,共24分)11、甲【解析】
根据方差的概念,方差越小代表数据越稳定,即可解题.【详解】解:∵两人的平均数相同,∴看两人的方差,方差小的选手发挥会更加稳定,∵=1.45,=2.3,∴应该选甲.【点睛】本题考查了方差的概念,属于简单题,熟悉方差的含义是解题关键.12、x<1.【解析】
根据一次函数与一元一次不等式的关系即可直接得出答案.【详解】由一次函数y=ax+b的图象经过A(1,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<1,故答案为:x<1.【点睛】本题主要考查一次函数和一元一次不等式的知识点,解答本题的关键是进行数形结合,此题比较简单.13、1或8【解析】
由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=1或x=8,所以AA′=8或AA′=1.【详解】设AA′=x,AC与A′B′相交于点E,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=15∘,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD−AA′=12−x,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x−12x+32=0,解得x=1,x=8,即移动的距离AA′等1或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.14、y=3x-4【解析】试题分析:根据一次函数的平移的性质:左减右加,上加下减,向下平移4个单位长度,可知y=3x-4.考点:一次函数的图像的平移15、4【解析】
由平行四边形ABCD的对角线相交于点O,,根据线段垂直平分线的性质,可得AM=CM,又由平行四边形ABCD的周长为8,可得AD+CD的长,继而可得△CDE的周长等于AD+CD.【详解】∵四边形ABCD是平行四边形∴OB=OD,AB=CD,AD=BC∵平行四边形ABCD的周长为8∴AD+CD=4∵∴AM=CM∴△CDE的周长为:CD+CM+DM=CD+AM+DM=AD+CD=4.故答案为:4【点睛】本题主要考查了平行四边形的性质,线段垂直平分线的性质。16、.【解析】
把代入方程,得出关于的一元二次方程,再整体代入.【详解】当时,方程为,即,所以,.故答案为:.【点睛】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了整体代入的思想.17、x>-1.【解析】
结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】观察图象知:当x>-1时,kx+b>4,故答案为x>-1.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18、-2,0【解析】
需要分类讨论:以AB为该平行四边形的边和对角线两种情况.【详解】解:如图,①当AB为该平行四边形的边时,AB=OC,∵点A(1,1),B(-1,1),O(0,0)∴点C坐标(-2,0)或(2,0)②当AB为该平行四边形的对角线时,C(0,2).故答案是:(-2,0)或(2,0)或(0,2).【点睛】本题考查了平行四边形的性质和坐标与图形性质.解答本题关键要注意分两种情况进行求解.三、解答题(共66分)19、(1)∠1=∠1,证明见解析;(1)∠1+∠1=180°,证明见解析;(3)一个角的两边与另一个角的两边分别平行,这两个角相等或互补;(4)这两个角分别是30°,30°或70°,110°.【解析】
(1)根据两直线平行,内错角相等,可求出∠1=∠1;
(1)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠1=180°;
(3)由(1)(1)可得出结论;(4)由(3)可列出方程,求出角的度数.【详解】解:(1)AB∥EF,BC∥DE,∠1与∠1的关系是:∠1=∠1
证明:∵AB∥EF
∴∠1=∠BCE
∵BC∥DE
∴∠1=∠BCE
∴∠1=∠1.
(1)AB∥EF,BC∥DE.∠1与∠1的关系是:∠1+∠1=180°.
证明:∵AB∥EF
∴∠1=∠BCE
∵BC∥DE
∴∠1+∠BCE=180°
∴∠1+∠1=180°.
(3)经过上述证明,我们可以得到一个真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(4)解:设其中一个角为x°,列方程得x=1x-30或x+1x-30=180,
故x=30或x=70,
所以1x-30=30或110,
答:这两个角分别是30°,30°或70°,110°.【点睛】本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.20、(1)(2)证明见解析(3).【解析】
(1)连接AC,根据三角形中线把三角形分成两个面积相等的三角形进行解答即可得;(2)连接EF,根据三角形中位线定理可得到BD与GH平行且相等,由此即可得证;(3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,通过证明△BPE≌△CQE可得BP=CQ,BP//CQ,同理:CO=ND,CO//ND,从而可得Q、C、O三点共线,继而通过证明△APM∽△AQC,可得PM:CQ=AM:AC,同理:MN:CO=AM:AC,即可得答案.【详解】(1)如图,连接AC,则有S△ABC+S△ACD=S四边形ABCD=5,∵E、F分别为BC、CD中点,∴S△AEC=S△ABC,S△AFC=S△ADC,∴S四边形AECF=S△AEC+S△AFC=S△ABC+S△ADC=S四边形ABCD=,故答案为:;(2)如图,连接EF,∵E、F分别是BC,CD的中点,∴EF∥BD,EF=BD.,∵EG=AE,FH=AF,∴EF∥GH,EF=GH.,∴BD∥GH,BD=GH.,∴四边形BGHD是平行四边形;(3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,在△BPE和△CQE中,∴△BPE≌△CQE(SAS),∴BP=CQ,∠PBE=∠QCE,∴BP//CQ,同理:CO=ND,CO//ND,∴Q、C、O三点共线,∴BD//OQ,∴△APM∽△AQC,∴PM:CQ=AM:AC,同理:MN:CO=AM:AC,∴.【点睛】本题考查了三角形中线的性质、三角形中位线定理、平行四边形的判定、全等三角形的判定与性质、相似三角形的判定与性质等,综合性较强,熟练掌握相关知识、正确添加辅助线是解题的关键.21、(1)见解析;(2)BM=25【解析】
(1)由AAS即可证明ΔAED≅ΔMBA(2)由ΔAED≅ΔMBA可得AE=BM=x由AE=2EM可得EM=x2,利用勾股定理在RtΔAMB【详解】(1)在矩形ABCD中,AB=DC=5,∠B=∠C=90°,AD∥BC,AD=BC∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°∴∠AED=∠ABM=90°在ΔAED和ΔMBA中,∠AED=∠ABM∠DAE=∠AMB∴ΔAED≅ΔMBA.(2)设BM=x,∵ΔAED≅ΔMBA∴AE=BM=x又AE=2EM∴EM=在RtΔAMB中,AB=5,AM=32∴AM∴(∴x=25即【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理,掌握矩形的性质、全等三角形的判定与性质、勾股定理是解题的关键.22、(1)B(1,2),,;(2)△BOD的面积3;(3)x≥1.【解析】
(1)先利用正比例函数解析式确定B点坐标,然后利用待定系数法求一次函数解析式,从而得到k、b的值;(2)先确定D点坐标,然后利用三角形面积公式计算△BOD的面积;(3)结合函数图象,写出自变量x的取值范围.【详解】(1)当x=1时,y2=2x=2,则B(1,2),把A(0,3),B(1,2)代入y=kx+b得,解得,所以一次函数解析式为y=-x+3;(2)当x=0时,-x+3=0,解得x=3,则D(3,0),所以△BOD的面积=×3×2=3;(3)当y1≤y2时,自变量x的取值范围为x≥1.故答案为x≥1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.23、(1)15°;(2)【解析】
(1)根据等边三角形的性质得∠EBC=60°,根据正方形的一条对角线平分内角可得∠CBD=45°,根据角的和与差可得结论;
(2)连接AF,证明△ABF≌△CBF(SAS),得AF=CF,∠BAF=∠BCF,根据等腰三角形的性质和等式的性质得∠ABE=∠DCE,从而得∠AGB=90°,最后利用面积和表示四边形ABFE的面积,可得结论.【详解】解:如解图1,四边形是正方形,平分∴.,是等边三角形.∴∠EBC=60°
°解:理由如下:如解图2,连接与交于点,四边形是正方形,.又.,由得,又..在中,.【点睛】本题考查了正方形的性质,三角形全等的性质和判定,三角形的面积,等边三角形的性质和判定等知识,解题的关键是熟练掌握正方形的性质,在正方形中确定全等三角形,属于中考常考题型.24、【发现证明】证明见解析;【类比引申】∠BAD=2∠EAF;【探究应用】1.2米.【解析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可得出EF=BE+FD.解:如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,AB=AD,∠ABM=∠D,BM=DF,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,AE=AE,∠FAE=∠MAE,AF=AM,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中教师心理健康与支持计划
- 2025-2030中国防潮自动涂布机行业发展分析及发展趋势预测与投资风险研究报告
- 2025-2030中国锰乙酰丙酮行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国银钎焊合金行业发展模式与前景规划分析研究报告
- 2025-2030中国铝箔冲压机行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国金属皂市场产销需求与发展前景趋势研究研究报告
- 2025-2030中国金刚石岩心钻机行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国重型纸标签行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国酒吧夜场行业现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030中国运送无人机行业市场发展趋势与前景展望战略研究报告
- 江苏徐州市深地科学与工程云龙湖实验室社会招考聘用9人模拟试卷【附答案解析】
- 土方回填施工记录表
- 植物根茎叶课件
- 反生产行为讲稿
- 施工现场消防安全技术交底
- 冀教版二年级语文下册看图写话专项加深练习题含答案
- 焊接工艺评定及焊接工艺技术评定管理标准
- 洗衣房各岗位工作流程
- 基于SWOT分析的义乌市现代物流业发展研究
- 基于自适应滤波对音频信号的处理详解
- 油浸式变压器工艺文件汇编
评论
0/150
提交评论