2024年湖北省恩施州恩施市数学八年级下册期末质量检测模拟试题含解析_第1页
2024年湖北省恩施州恩施市数学八年级下册期末质量检测模拟试题含解析_第2页
2024年湖北省恩施州恩施市数学八年级下册期末质量检测模拟试题含解析_第3页
2024年湖北省恩施州恩施市数学八年级下册期末质量检测模拟试题含解析_第4页
2024年湖北省恩施州恩施市数学八年级下册期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年湖北省恩施州恩施市数学八年级下册期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.一个三角形的两边长分别是3和7,则第三边长可能是()A.2 B.3 C.9 D.102.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.163.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2:3C.四边形ABCD与四边形AEFG的周长比是2:3D.四边形ABCD与四边形AEFG的面积比是4:95.若是一个完全平方式,则k的值是()A.8 B.-2 C.-8或-2 D.8或-26.函数中自变量的取值范围是()A. B. C. D.全体实数7.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.6 B.12 C.4 D.88.如图,在正方形中,为边上一点,将沿折叠至处,与交于点,若,则的大小为()A. B. C. D.9.如果与最简二次根式是同类二次根式,则的值是()A. B. C. D.10.下列方程中,有实数解的方程是()A.; B.;C.; D.二、填空题(每小题3分,共24分)11.有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是_________.12.有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.13.方程的解是__________.14.甲乙两人在5次打靶测试中,甲成绩的平均数,方差,乙成绩的平均数,方差.教练根据甲、乙两人5次的成绩,选一名队员参加射击比赛,应选择__________.15.将一个矩形纸片按如图所示折叠,若,则的度数是______.16.用反证法证明“如果,那么.”是真命题时,第一步应先假设________

.17.如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.18.某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.三、解答题(共66分)19.(10分)如图,在△ABC中,CA=CB=5,AB=6,AB⊥y轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.(1)若OA=8,求k的值;(2)若CB=BD,求点C的坐标.20.(6分)如图1,在△ABC中,AB=BC=5,AC=6,△ECD是△ABC沿BC方向平移得到的,连接AE、BE,且AC和BE相交于点O.(1)求证:四边形ABCE是菱形;(2)如图2,P是线段BC上一动点(不与B.C重合),连接PO并延长交线段AE于点Q,过Q作QR⊥BD交BD于R.①四边形PQED的面积是否为定值?若是,请求出其值;若不是,请说明理由;②以点P、Q、R为顶点的三角形与以点B.C.O为顶点的三角形是否可能相似?若可能,请求出线段BP的长;若不可能,请说明理由.21.(6分)如图是由25个边长为1的小正方形组成的网格,请在图中画出以为斜边的2个面积不同的直角三角形.(要求:所画三角形顶点都在格点上)22.(8分)一个“数值转换机”如图所示,完成下表并回答下列问题:输入输出(1)根据上述计算你发现了什么规律?(2)请说明你发现的规律是正确的.23.(8分)如图,小明家所在区域的部分平面示意图,请你分别以正东、正北为轴、轴正方向,在图中建立平面直角坐标系,使汽车站的坐标是,(1)请你在图中画出所建立的平面直角坐标系;(2)用坐标说明学校和小明家的位置;(3)若图中小正方形的边长为,请你计算小明家离学校的距离.24.(8分)(1)分解因式:x(a-b)+y(a-b)(2)解分式方程:25.(10分)如图,在□ABCD中,AB=10,AD=8,AC⊥BC,求□ABCD的面积.26.(10分)如图,四边形是菱形,对角线,相交于点,且.(1)菱形的周长为;(2)若,求的长.

参考答案一、选择题(每小题3分,共30分)1、C【解析】设第三边长为x,由题意得:7-3<x<7+3,则4<x<10,故选C.【点睛】本题主要考查了三角形的三边关系:第三边的范围是:大于已知的两边的差,而小于两边的和.2、D【解析】

先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.【详解】如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA==8,∴AE=2OA=16.故选D.【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.3、B【解析】

将各选项中长度最长的线段长求出平方,剩下的两线段长求出平方和,若两个结果相等,利用勾股定理的逆定理得到这三条线段能组成直角三角形;反之不能组成直角三角形.【详解】A、∵42+52=41;62=36,

∴42+52≠62,

则此选项线段长不能组成直角三角形;B、∵32+42=9+16=85;52=25,

∴32+42=52,

则此选项线段长能组成直角三角形;

C、∵52+62=61;72=49,

∴52+62≠72,

则此选项线段长不能组成直角三角形;

D、∵12+()2=3;32=9,

∴12+()2≠32,

则此选项线段长不能组成直角三角形;故选B【点睛】此题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解本题的关键.4、B【解析】∵四边形ABCD与四边形AEFG是位似图形;A、四边形ABCD与四边形AEFG一定是相似图形,故正确;B、AD与AG是对应边,故AD:AE=2:3;故错误;C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;D、则周长的比是2:3,面积的比是4:9,故正确.故选B.5、D【解析】

利用完全平方公式的结构特征判断即可确定出k的值.【详解】∵x1+1(k-3)x+15是一个整式的平方,

∴1(k-3)=±10,

解得:k=8或-1.

故选:D.【点睛】考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6、A【解析】

根据被开方数非负得到不等式x-2≥0,求解即可得到答案.【详解】由二次根式有意义的条件,得x-2≥0,即x≥2,故选A.【点睛】此题考查函数自变量的取值范围,解题关键在于掌握运算法则.7、A【解析】

过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【详解】解:如图,过点D作DH⊥AC于H,

∵AD是△ABC的角平分线,DF⊥AB,

∴DF=DH,

在Rt△DEF和Rt△DGH中,,

∴Rt△DEF≌Rt△DGH(HL),

∴S△EDF=S△GDH,设面积为S,

同理Rt△ADF≌Rt△ADH,

∴S△ADF=S△ADH,

即38+S=50-S,

解得S=1.

故选A.【点睛】本题考查角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,解题的关键是作辅助线构造出全等三角形并利用角平分线的性质.8、B【解析】

首先利用正方形性质得出∠B=∠BCD=∠BAD=90°,从而得知∠ACB=∠BAC=45°,然后进一步根据三角形外角性质可以求出∠BEF度数,再结合折叠性质即可得出∠BAE度数,最后进一步求解即可.【详解】∵四边形ABCD为正方形,∴∠B=∠BCD=∠BAD=90°,∴∠ACB=∠BAC=45°,∵∠EFC=69°,∴∠BEF=∠EFC+∠ACB=114°,由折叠性质可得:∠BEA=∠BEF=57°,∴∠BAE=90°−57°=33°,∴∠EAC=45°−33°=12°,故选:B.【点睛】本题主要考查了正方形性质与三角形外角性质的综合运用,熟练掌握相关概念是解题关键.9、B【解析】

根据同类二次根式的定义得出5+a=3,求出即可.【详解】∵与最简二次根式是同类二次根式,,∴5+a=3,解得:a=﹣1.故选B.【点睛】本题考查了同类二次根式和最简二次根式,能根据同类二次根式的定义得出5+a=3是解答此题的关键.10、B【解析】

首先对每一项的方程判断有无实数解,就是看方程的解是否存在能满足方程的左右两边相等的实数.一元二次方程要有实数根,则△≥0;算术平方根不能为负数;分式方程化简后求出的根要满足原方程.【详解】

解:A项移项得:,等式不成立,所以原方程没有实数解,故本选项错误;B项移项得,存在实数x使等式成立;所以原方程有实数解,故本选项符合题意;C项是一元二次方程,△==-15<0,方程无实数根,故本选项错误;D.化简分式方程后,求得x=1,检验后,x=1为增根,故原分式方程无解.故本选项错误;故选B.【点睛】本题考查了无理方程、高次方程、分式方程的解法,二次根式的性质,属于基础知识,需熟练掌握.二、填空题(每小题3分,共24分)11、11.1【解析】

根据平均数的公式求解即可,8个数的和加12个数的和除以20即可.【详解】解:根据平均数的求法:共8+12=20个数,这些数之和为8×11+12×12=232,故这些数的平均数是=11.1.故答案为:11.1.【点睛】本题考查的是样本平均数的求法,,熟练掌握加权平均数公式是解答本题的关键.12、1或1.【解析】

试题分析:分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,①当30度角是等腰三角形的顶角时,如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.②当30度角是底角时,如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=11°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.考点:正方形的性质;等腰三角形的性质.13、【解析】

先移项,然后开平方,再开立方即可得出答案.【详解】,,故答案为:.【点睛】本题主要考查解方程,掌握开平方和开立方的法则是解题的关键.14、甲【解析】

根据根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】解:因为甲、乙射击成绩的平均数一样,但甲的方差较小,说明甲的成绩比较稳定,因此推荐甲更合适.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数。15、40°【解析】

依据平行线的性质,即可得到,,进而得出,再根据进行计算即可.【详解】解:如图所示,,,,由折叠可得,,,故答案为:.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.16、a≥0【解析】

用反正法证明命题应先假设结论的反面成立,本题结论的反面应是.【详解】解:“如果,那么.”是真命题时

,用反证法证明第一步应假设.故答案为:【点睛】本题考查了反证法,熟练掌握反证法的证明步骤是解题的关键.17、1【解析】

根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.【详解】根据图象可知位于线段BC上,设线段BC的解析式为将代入解析式中得解得∴线段BC解析式为,当时,,∴乘坐该出租车8(千米)需要支付的金额为1元.故答案为:1.【点睛】本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.18、乙【解析】试题分析:从图中看到,乙的波动比甲的波动小,故乙的产量稳定.故填乙.考点:方差;折线统计图.点评:本题要求了解方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题(共66分)19、(1)1;(2)(3,2)【解析】

(1)过C作CM⊥AB,CN⊥y轴,利用勾股定理求出CM的长,结合OA的长度,则C点坐标可求,因C在图象上,把C点代入反比例函数式求出k即可;(2)已知CB=BD,则AD长可求,设OA=a,把C、D点坐标用已知数或含a的代数式表示,因C、D都在反比例函数图象上,把C、D坐标代入函数式列式求出a值即可.【详解】(1)解:过C作CM⊥AB,CN⊥y轴,垂足为M、N,∵CA=CB=5,AB=6,∴AM=MB=3=CN,在Rt△ACD中,CD==4,∴AN=4,ON=OA﹣AN=8﹣4=4,∴C(3,4)代入y=得:k=1,答:k的值为1.(2)解:∵BC=BD=5,∴AD=6﹣5=1,设OA=a,则ON=a﹣4,C(3,a﹣4),D(1,a)∵点C、D在反比例函数的图象上,∴3(a﹣4)=1×a,解得:a=6,∴C(3,2)答:点C的坐标为(3,2)【点睛】本题主要考查反比例函数的几何应用,解题关键在于能够做出辅助线,利用勾股定理解题.20、(1)见解析;(2)①24,②75【解析】

(1)利用平移的性质以及菱形的判定得出即可;(2)①首先过E作EF⊥BD交BD于F,则∠EFB=90°,证出△QOE≌△POB,利用QE=BP,得出四边形PQED的面积为定值;②当∠QPR=∠BCO时,△PQR∽△CBO,此时有OP=OC=3,过O作OG⊥BC交BC于G,得出△OGC∽△BOC,利用相似三角形的性质得出CG的长,进而得出BP的长.【详解】(1)证明:∵△ABC沿BC方向平移得到△ECD,∴EC=AB,AE=BC,∵AB=BC,∴EC=AB=BC=AE,∴四边形ABCE是菱形;(2)①四边形PQED的面积是定值,理由如下:过E作EF⊥BD交BD于F,则∠EFB=90°,∵四边形ABCE是菱形,∴AE∥BC,OB=OE,OA=OC,OC⊥OB,∵AC=6,∴OC=3,∵BC=5,∴OB=4,sin∠OBC=OCBC=∴BE=8,∴EF=BE⋅sin∠OBC=8×35∵AE∥BC,∴∠AEO=∠CBO,四边形PQED是梯形,在△QOE和△POB中∠AEO=∠CBOOE=OB∠QOE=∠POB∴△QOE≌△POB,∴QE=BP,∴S梯形PQED=12(QE+PD)×EF=12(BP+DP)×EF=12×BD×EF=1②△PQR与△CBO可能相似,∵∠PRQ=∠COB=90°,∠QPR>∠CBO,∴当∠QPR=∠BCO时,△PQR∽△CBO,此时有OP=OC=3.过O作OG⊥BC交BC于G.∵∠OCB=∠OCB,∠OGC=∠BOC,∴△OGC∽△BOC,∴CG:CO=CO:BC,即CG:3=3:5,∴CG=95∴BP=BC−PC=BC−2CG=5−2×95=7【点睛】此题考查相似形综合题,涉及了相似三角形的判定与性质,解直角三角形,菱形的性质,平移的性质等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.21、见解析【解析】

根据勾股定理逆定理,结合网格结构,作出一个直角边分别为2,4的直角三角形或者作出一个直角边都为的直角三角形即可【详解】【点睛】考查勾股定理,在直角三角形中,两条直角边的平方和等于斜边的平方.22、(1)无论输入为多少,输出的值均为;(2)见详解【解析】

(1)根据题中的“数值转换机”程序代入数值计算即可;(2)根据题中的“数值转换机”程序得到化简即可得到结论.【详解】输入输出(1)无论输入为多少,输出的值均为.(2)【点睛】此题考查了分式的混合运算,熟练掌握分式的混合运算顺序和因式分解是解决问题的关键.23、(1)见解析;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论