2024届辽宁省丹东市第七中学八年级数学第二学期期末联考模拟试题含解析_第1页
2024届辽宁省丹东市第七中学八年级数学第二学期期末联考模拟试题含解析_第2页
2024届辽宁省丹东市第七中学八年级数学第二学期期末联考模拟试题含解析_第3页
2024届辽宁省丹东市第七中学八年级数学第二学期期末联考模拟试题含解析_第4页
2024届辽宁省丹东市第七中学八年级数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省丹东市第七中学八年级数学第二学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.小丽家在学校北偏西60°方向上,距学校4km,以学校所在位置为坐标原点建立直角坐标系,1km为一个单位长度,则小丽家所在位置的坐标为()A.(﹣2,﹣2) B.(﹣2,2) C.(2,﹣2) D.(﹣2,﹣2)2.如图,四边形中,,,,,则四边形的面积是().A. B. C. D.3.下列二次根式,最简二次根式是()A.8 B.12 C.5 D.4.如图,正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8 B. C. D.105.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>26.我县某贫围户2016年的家庭年收入为4000元,由于党的扶贫政策的落实,2017、2018年家庭年收入增加到共15000元,设平均每年的增长率为x,可得方程()A.4000(1+x)2=15000 B.4000+4000(1+x)+4000(1+x)2=15000C.4000(1+x)+4000(1+x)2=15000 D.4000+4000(1+x)2=150007.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离(米)与甲出发的时间(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙用16分钟追上甲;③乙走完全程用了30分钟;④乙到达终点时甲离终点还有360米.其中正确的结论有()A.1个 B.2个 C.3个 D.4个8.将函数的图象向上平移5个单位长度,得到的函数解析式为()A. B.C. D.9.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)210.(2016广西贵港市)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1二、填空题(每小题3分,共24分)11.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.12.一个样本为1,3,a,b,c,2,2已知这个样本的众数为3,平均数为2,那么这个样本的中位数为_______13.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)14.如图,点A是函数y=(x>0)图象上的点,过点A作AB⊥x轴于点B,若点C(2,0),AB=2,S△ABC=3,则k=______.15.已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为________.16.已知双曲线经过点(-1,2),那么k的值等于_______.17.若代数式在实数范围内有意义,则的取值范围为____.18.学校团委会为了举办“庆祝五•四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有____人.三、解答题(共66分)19.(10分)小林为探索函数的图象与性经历了如下过程(1)列表:根据表中的取值,求出对应的值,将空白处填写完整2.533.544.556____2____1.21(2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象.(3)若函数的图象与的图象交于点,,且为正整数),则的值是_____.20.(6分)解方程:(1)(2x+1)2=(x-1)2;(2)x2+4x-7=021.(6分)已知一次函数,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当______时,.22.(8分)提出问题:(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由.23.(8分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.24.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.25.(10分)定义:任意两个数,,按规则得到一个新数,称所得的新数为数,的“传承数.”(1)若,,求,的“传承数”;(2)若,,且,求,的“传承数”;(3)若,,且,的“传承数”值为一个整数,则整数的值是多少?26.(10分)某公司生产某环保产品的成本为每件40元,经过市场调研发现:这件产品在未来两个月天的日销量件与时间天的关系如图所示未来两个月天该商品每天的价格元件与时间天的函数关系式为:根据以上信息,解决以下问题:请分别确定和时该产品的日销量件与时间天之间的函数关系式;请预测未来第一月日销量利润元的最小值是多少?第二个月日销量利润元的最大值是多少?为创建“两型社会”,政府决定大力扶持该环保产品的生产和销售,从第二个月开始每销售一件该产品就补贴a元有了政府补贴以后,第二个月内该产品日销售利润元随时间天的增大而增大,求a的取值范围.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据题意联立直角坐标系,再利用勾股定理即可求解.【详解】解:由题意可得:AO=4km,∠AOB=30°,则AB=2,BO=,故A点坐标为:(﹣2,2).故选:B.【点睛】此题主要考查直角坐标系的应用,解题的关键是根据题意作出直角坐标系进行求解.2、A【解析】如下图,分别过、作的垂线交于、,∴,∵,∴,在中,,∴.故选A.3、C【解析】

检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4、D【解析】

要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【详解】连接BM,∵点B和点D关于直线AC对称,

∴NB=ND,

则BM就是DN+MN的最小值,

∵正方形ABCD的边长是8,DM=2,

∴CM=6,

∴BM==1,

∴DN+MN的最小值是1.故选:D.【点睛】此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.5、C【解析】

由图象可知,直线与x轴相交于(1,0),当y>0时,x<1.故答案为x<1.6、C【解析】

设平均每年的增长率是x,可得2017年的收入为:4000(1+x)元,则2018年年收入为:4000(1+x)2,进而得出等式求出答案【详解】解:设平均每年的增长率是x,根据题意可得:4000(1+x)+4000(1+x)2=1.故选:C.【点睛】本题考查了一元二次方程应用中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7、C【解析】

根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙追上甲用的时间为:16-4=12(分钟),故②错误,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故③正确,乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④正确,故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8、A【解析】

根据函数图象上加下减,可得答案.【详解】由题意,得y=2x+5,即y=2x+5,故选:A.【点睛】此题考查一次函数图象与几何变换,解题关键在于掌握平移法则9、A【解析】

x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,所以公因式是:x-1,故选A.【点睛】本题考查多项式的公因式,解题的关键是把每一个多项式都因式分解.10、C【解析】依题意得:,解得x>1,故选C.二、填空题(每小题3分,共24分)11、【解析】

如图,在Rt△ADF和Rt△AEF中,AD=AE,AF=AF,∴≌(),故,因为是正方形的对角线,故,故∠FAD=22.5°,故答案为22.5.12、2【解析】分析:先根据众数为3,平均数为2求出a,b,c的值,然后根据中位数的求法求解即可.详解:∵这个样本的众数为3,∴a,b,c中至少有两个数是3.∵平均数为2,∴1+3+a+b+c+2+2=2×7,∴a+b+c=6,∴a,b,c中有2个3,1个0,∴从小到大可排列为:0,1,2,2,3,3,3,∴中位数是2.故答案为:2.点睛:本题考查了众数、平均数、中位数的计算,熟练掌握众数、平均数、中位数的计算方法是解答本题的关键.众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.13、中位数【解析】

七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,【详解】解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.故答案为:中位数.【点睛】考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.14、1【解析】

根据三角形的面积求出BC,求出A点的坐标,把A点的坐标代入函数解析式求出即可.【详解】解:∵S△ABC=3,AB=2,∴=3,∴BC=3,∵C(2,0),∴OB=2+3=5,∴A点的坐标是(5,2),代入y=得:k=2×5=1,故答案为:1.【点睛】本题考查了用待定系数法求反比例函数的解析式和反比例函数图象上点的坐标特征,能求出A点的坐标是解此题的关键.15、2【解析】

由∠ACB=90°,CD是斜边上的中线,求出AB=1,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=31推出AC•BC=14,根据SAC•BC即可求出答案.【详解】如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=1.∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=31,∴(AC+BC)2﹣2AC•BC=31,∴AC•BC=14,∴SAC•BC=2.故答案为:2.【点睛】本题考查了对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解答此题的关键.16、-1【解析】

分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.17、且【解析】

根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据二次根式有意义,分式有意义得:且≠0,即且.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.18、250【解析】

由扇形统计图可知,赞成举办郊游的学生占1-40%-35%=25%,根据赞成举办文艺演出的人数与对应的百分比可求出总人数,由此即可解决.【详解】400÷40%=1000(人),1000×(1-40%-35%)=1000×25%=250(人),故答案为250.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.三、解答题(共66分)19、(1)3,1.5;(1)见解析;(3)1.【解析】

(1)当时,,即可求解;(1)描点描绘出以下图象,(3)在(1)图象基础上,画出,两个函数交点为,,即可求解.【详解】解:(1)当时,,同理当时,,故答案为3,1.5;(1)描点描绘出以下图象,(3)在(1)图象基础上,画出,两个函数交点为,,即,故答案为1.【点睛】本题考查的是反比例函数综合运用,涉及到一次函数基本性质、复杂函数的作图,此类题目通常在作图的基础上,依据图上点和线之间的关系求解.20、(1)x1=0,x2=-2;(2)x1=-2+,x2=-2-.【解析】分析:(1)用直接开平方法求解即可;(2)根据求根公式:计算即可.详解:(1)∵(2x+1)2=(x-1)2,∴2x+1=x-1或2x+1=-(x-1),∴2x-x=-1-1或2x+1=-x+1,∴2x-x=--1或2x+1=-x+1,∴x=-2或x=0,即x1=0,x2=-2;(2)x2+4x-7=0∵a=1,b=4,c=-7,∴x=,∴x1=-2+,x2=-2-.点睛:本题主要考查的知识点是一元二次方程的解法-直接开平方法和求根公式法.熟练掌握直接开平方法和求根公式法是解答本题的关键,本题属于一道基础题,难度适中.21、(1)答案见解析;(2)<1.【解析】

(1)作出函数图象即可;(2)观察图象即可求解.【详解】(1)画图如下:(2)由图可知,当x<1时,y>1.【点睛】本题考查了一次函数图象与性质,一次函数与不等式之间的关系,利用数形结合思想解题是解决此类题型的关键.22、(1)见解析;(2)EF=GH,理由见解析【解析】

(1)由正方形的性质可得AB=DA,∠ABE=90°=∠DAH.又由∠ADO+∠OAD=90°,可证得∠HAO=∠ADO,继而证得△ABE≌△DAH,可得AE=DH;(2)将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据(1)的结论得AM=DN,所以EF=GH;【详解】(1)证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAH.∴∠HAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠HAO=∠ADO.在△ABE和△DAH中∠BAE=∠HDAAB=AD∠B=∠HAD∴△ABE≌△DAH(ASA),∴AE=DH;(2)解:EF=GH.理由:如图所示:将FE平移到AM处,则AM∥EF,AM=EF.将GH平移到DN处,则DN∥GH,DN=GH.∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,所以EF=GH.【点睛】此题考查四边形综合题,解题关键在于证明△ABE≌△DAH,再根据平移的性质求得AM=EF,DN=GH.23、(1);(2)作图见解析.【解析】分析:(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.详解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.点睛:本题考查了作图-应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.24、10+1.【解析】

先证明四边形ACED

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论