福建省罗源第二中学2024年八年级数学第二学期期末监测模拟试题含解析_第1页
福建省罗源第二中学2024年八年级数学第二学期期末监测模拟试题含解析_第2页
福建省罗源第二中学2024年八年级数学第二学期期末监测模拟试题含解析_第3页
福建省罗源第二中学2024年八年级数学第二学期期末监测模拟试题含解析_第4页
福建省罗源第二中学2024年八年级数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省罗源第二中学2024年八年级数学第二学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.点关于轴对称的点的坐标是()A. B. C. D.2.若,则下列各式一定成立的是()A. B.C. D.3.下列等式中,从左到右的变形是因式分解的是()A. B.C. D.4.已知的三边,,满足,则的面积为()A. B. C. D.5.如图,在中,于点D,且是的中点,若则的长等于()A.5 B.6 C.7 D.86.已知一元二次方程有一个根为2,则另一根为A.2 B.3 C.4 D.87.如图,为矩形的对角线的中点,过点作的垂线分别交、于点、,连结.若该矩形的周长为20,则的周长为()A.10 B.9 C.8 D.58.若a+|a|=0,则等于()A.2﹣2a B.2a﹣2 C.﹣2 D.29.下列根式中属最简二次根式的是()A. B. C. D.10.如图,已知AB=10,点C,D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是().A.6 B.5 C.4 D.3.二、填空题(每小题3分,共24分)11.如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.12.如图,矩形纸片ABCD的边长AB=4,AD=2,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),着色部分的面积为______________.13.如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB的距离是___cm.14.我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.现有一个对角线分别为6cm和8cm的菱形,它的中点四边形的对角线长是________.15.在周长为的平行四边形中,相邻两条边的长度比为,则这个平行四边形的较短的边长为________.16.如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.17.如图,点A,B在函数的图象上,点A、B的横坐标分别为、3,则△AOB的面积是_____.18.如图,AB∥CD∥EF,若AE=3CE,DF=2,则BD的长为________.三、解答题(共66分)19.(10分)如图,为长方形的对角线,将边沿折叠,使点落在上的点处.将边沿折叠,使点落在上的点处。求证:四边形是平行四边形;若,求四边形的面积。20.(6分)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.[来根据以上信息,解答下列问题:(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.21.(6分)如图,在□ABCD中,E、F为对角线AC上的两点,且AE=CF.(1)求证:四边形DEBF是平行四边形;(2)如果DE=3,EF=4,DF=5,求EB、DF两平行线之间的距离.22.(8分)如图,已知函数的图象为直线,函数的图象为直线,直线、分别交轴于点和点,分别交轴于点和,和相交于点(1)填空:;求直线的解析式为;(2)若点是轴上一点,连接,当的面积是面积的2倍时,请求出符合条件的点的坐标;(3)若函数的图象是直线,且、、不能围成三角形,直接写出的值.23.(8分)如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若,,求BF的长.24.(8分)工艺商场以每件元购进一批工艺品.若按每件元销售,工艺商场每天可售出该工艺品件.若每件工艺品降价元,则每天可多售出工艺品件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?25.(10分)求证:矩形的对角线相等要求:画出图形,写出已知,求证和证明过程26.(10分)已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.(1)如图(1)AB∥EF,BC∥DE,∠1与∠2的关系是:____________.(2)如图(2)AB∥EF,BC∥DE,∠1与∠2的关系是:____________(3)经过上述证明,我们可以得到一个真命题:如果_________,那么____________.(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据关于y轴对称的点纵坐标相同,横坐标互为相反数即可得解.【详解】解:点关于轴对称的点的坐标是.故选A.【点睛】本题主要考查关于坐标轴对称的点的坐标,关于x轴对称的点是横坐标相同,纵坐标互为相反数;关于y轴对称的点是纵坐标相同,横坐标互为相反数.2、D【解析】

将条件进行变形后,再根据不等式的基本性质进行判断即可得解.【详解】由a-b<0,可得:a<b,因而a>b错误,故选项A错误;当a<0b>0时,ab>0错误,故选项B错误;∵a<b,∴,故选项C错误;∵a<b,∴,故选项D正确.故选D.【点睛】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3、D【解析】

根据因式分解的定义,逐一判断选项,即可得到答案.【详解】∵是整式的乘法,不是因式分解,∴A不符合题意,∵不是因式分解,∴B不符合题意,∵不是因式分解,∴C不符合题意,∵是因式分解,∴D符合题意.故选D.【点睛】本题主要考查因式分解的定义,掌握因式分解的定义,是解题的关键.4、B【解析】

根据非负数的性质得到b=4,c=3,a=5,根据勾股定理的逆定理得到△ABC是直角三角形,由三角形的面积公式即可得到结论.【详解】解:∵,∴

即,

∴b=4,c=3,a=5,

∴b2+c2=a2,

∴△ABC是直角三角形,

∴△ABC的面积=×3×4=1.

故选B.【点睛】本题考查非负数的性质,勾股定理的逆定理,三角形的面积的计算,熟练掌握勾股定理的逆定理是解题的关键.5、D【解析】

由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD==8.故选D【点睛】此题考查勾股定理,直角三角形斜边上的中线,解题关键在于利用勾股定理求值6、C【解析】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6,解得α=1.考点:根与系数的关系.7、A【解析】

根据线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等,可得出AE=CE,即可得出的周长.【详解】解:∵为矩形的对角线的中点,∴AO=OC,又∵AC⊥EF,∴AE=CE,又∵矩形的周长为20,∴AD+CD=∴的周长为CD+CE+DE=CD+AE+DE=10故答案为A.【点睛】此题主要考查利用线段垂直平分线的性质,进行等量转换,即可解题.8、A【解析】

直接利用二次根式的性质化简得出答案.【详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.9、A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式10、D【解析】

分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=1,即G的移动路径长为1.故选D.【点睛】本题考查了等边三角形的性质,平行四边形的判定与性质,以及中位线的性质,确定出点G的运动轨迹是解答本题的关键.二、填空题(每小题3分,共24分)11、1【解析】

平移的距离为线段BE的长求出BE即可解决问题;【详解】∵BC=EF=5,EC=3,∴BE=1,∴平移距离是1,故答案为:1.【点睛】本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.12、【解析】设BE=x,则AE=EC=CF=4-x,在Rt△ECB中,CE2=BE2+BC2,∴(4-x)2=x2+22,∴x=,CF=.S着色部分=S矩形ABCD-S△ECF=4×2-××2=13、1【解析】

根据角平分线上的点到角两边的距离相等可得点P到OB的距离等于点P到OA的距离,即点P到OB的距离等于PE的长度.【详解】解:∵OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,∴PE=PF=1cm故答案为:1.【点睛】本题考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题关键.14、5cm【解析】

顺次连接这个菱形各边中点所得的四边形是矩形,且矩形的边长分别是菱形对角线的一半,问题得解.【详解】解:如图:顺次连接对角线互相垂直的四边形的各边中点所得的图形是矩形;理由如下:E、F、G、H分别为各边中点EF//GH//AC,EF=GH=DB,EF=HG=AC,EH∥FG∥BDDB⊥AC,EF⊥EH,四边形EFGH是矩形,EH=BD=3cm,EF=AC=4cm,HF==5cm.故答案为:5cm.【点睛】本题考查菱形的性质,菱形的四边相等,对角线互相垂直,连接菱形各边的中点得到矩形,且矩形的边长是菱形对角线的一半以及勾股定理的运用.15、1【解析】

由已知可得相邻两边的和为9,较短边长为xcm,则较长边长为2x,解方程x+2x=9即可.【详解】因为平行四边形周长为18cm,所以相邻两边的长度之和为9cm.设较短边长为xcm,则较长边长为2x,所以x+2x=9,解得x=1.故答案为1.【点睛】本题主要考查了平行四边形的性质,解决平行四边形周长问题一定要熟记平行四边形周长等于两邻边和的2倍.16、1【解析】

根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.【详解】根据图象可知位于线段BC上,设线段BC的解析式为将代入解析式中得解得∴线段BC解析式为,当时,,∴乘坐该出租车8(千米)需要支付的金额为1元.故答案为:1.【点睛】本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.17、1【解析】

过A作AC⊥x轴于C,过B作BD⊥x轴于D,由点A,B在函数的图象上,得到S△AOC=S△BOD=,求得A(m,),B(3m,),于是得到结论.【详解】解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A,B在函数的图象上,∴S△AOC=S△BOD=,∵点A、B的横坐标分别为m、3m,∴A(m,),B(3m,),∴S△AOB=S四边形ACDB=(+)×(3m-m)=1,故答案为1.【点睛】本题考查了反比例函数系数k的几何意义,证得S△AOB=S四边形ACDB是解题的关键.18、1【解析】

根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵AB∥CD∥EF,,.解得,BD=1,

故答案为:1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.三、解答题(共66分)19、(1)证明过程见解析;(2)四边形的面积为30.【解析】

(1)首先证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等的四边形是平行四边形可证明AECF是平行四边形;(2)由可得BC=8,由折叠性质可设BE=EM=x,根据,可以求出x的值,进而求出四边形的面积.【详解】(1)证明:∵四边形ABCD为矩形∴AB=CD,AD∥CB,∠B=∠D=90°,∠BAC=∠DCA由翻折性质可知:∠EAB=∠BAC,∠DCF=∠DCA∴∠EAB=∠DCF在△ABE和△CDF中∴△ABE≌△CDF∴BE=DF∴AF=CE又AF∥CE∴四边形AECF是平行四边形.(2)解:∵∴BC=8由翻折性质可知:BE=EM可设BE=EM=x且即:解得x=3∴CE=BC-BE=8-3=5∴【点睛】本题主要考查全等三角形的性质与判定,平行四边形以及直角三角形,是一个比较综合性的题目.20、(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【解析】试题分析:(1)根据函数图象中的信息,分别运用待定系数法求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分别求解即可.试题解析:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.考点:1.用待定系数法求一次函数关系式;2.一次函数的应用.21、(1)详见解析;(2)2.1.【解析】

(1)根据平行四边形的性质可得AD=BC,AD∥BC,继而可得∠DAE=∠BCF,然后即可利用SAS证明△ADF≌△CBE,进一步即可证明DF=EB,DF∥EB,即可证得结论;(2)先根据勾股定理的逆定理得出DE⊥EF,然后根据三角形的面积即可求出结果.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,∵AE=CF,∴AF=CE,∴△ADF≌△CBE(SAS),∴DF=EB,∠DFA=∠BEC,∴DF∥EB,∴四边形DEBF是平行四边形;(2)解:∵,,∴,∴DE⊥EF.过点E作EG⊥DF于G,如图,则,即3×1=EG×5,∴EG=2.1.∴EB、DF两平行线之间的距离为2.1.【点睛】本题考查了平行四边形的性质和判定、全等三角形的判定和性质、两平行线之间的距离的定义、勾股定理的逆定理和三角形的面积等知识,属于常见题型,熟练掌握平行四边形的判定和性质是解题的关键.22、(1),直线的解析式为;(2)点的坐标为或;(3)的值为或或.【解析】

(1)将点坐标代入中,即可得出结论;将点,坐标代入中,即可得出结论;(2)先利用两三角形面积关系判断出,再分两种情况,即可得出结论;(3)分三种情况,利用两直线平行,相等或经过点讨论即可得出结论.【详解】解:(1)点在函数的图象上,,,直线过点、,可得方程组为,解得,直线的解析式为;故答案为:;(2)是与轴的交点,当时,,,坐标为,又的面积是面积的2倍,第一种情况,当在线段上时,,,即,∴,坐标,第二种情况,当在射线上时,,,,坐标,点的坐标为或;(3)、、不能围成三角形,直线经过点或或,①直线的解析式为,把代入到解析式中得:,,②当时,∵直线的解析式为,,③当时,∵直线的解析式为,,即的值为或或.【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,待定系数法,三角形的面积的求法,用分类讨论的思想解决问题是解本题的关键.23、1.【解析】

先求出BC′,再由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.【详解】解:∵将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上

∴BC'=AB=3,CF=C'F

在Rt△BC'F中,C'F2=BF2+C'B2,

∴CF2=(9-CF)2+9

∴CF=5

∴BF=1.【点睛】本题考查折叠问题及勾股定理的应用,同时也考查了列方程求解的能力.解题的关键是找出线段的关系.24、10,4900【解析】

设每件工艺品降价x元出售,每天获得的利润为y元,根据题意列出方程,再根据二次函数最值的性质求解即可.【详解】设每件工艺品降价x元出售,每天获得的利润为y元,由题意得∴当时,y有最大值,最大值为4900故每件工艺品降价10元出售,每天获得的利润最大,获得的最大利润是4900元.【点睛】本题考查了二次函数的实际应用,掌握二次函数的最值是解题的关键.25、证明见解析.【解析】分析:由“四边形AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论