江西省婺源县2024年八年级下册数学期末质量检测试题含解析_第1页
江西省婺源县2024年八年级下册数学期末质量检测试题含解析_第2页
江西省婺源县2024年八年级下册数学期末质量检测试题含解析_第3页
江西省婺源县2024年八年级下册数学期末质量检测试题含解析_第4页
江西省婺源县2024年八年级下册数学期末质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省婺源县2024年八年级下册数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.对于方程:,下列判断正确的是()A.只有一个实数根 B.有两个不同的实数根C.有两个相同的实数根 D.没有实数根2.若一个正多边形的一个内角是135°,则这个正多边形的边数是()A.10 B.9 C.8 D.63.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点E、F,FD⊥x轴,垂足为D,连接OE、OF、EF,FD与OE相交于点G.下列结论:①OF=OE;②∠EOF=60°;③四边形AEGD与△FOG面积相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,则直线FE的函数解析式为.其中正确结论的个数是()A.2 B.3 C.4 D.54.直角三角形斜边上的高与中线分别为5cm和6cm,则它的面积为()cm1.A.30 B.60 C.45 D.155.如图,▱OABC的顶点O、A、C的坐标分别是(0,0),(2,0),(0.5,1),则点B的坐标是()A.(1,2) B.(0.5,2) C.(2.5,1) D.(2,0.5)6.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360° B.对角线互相平分 C.对角线相等 D.对角线互相垂直7.16的值为()A.±4 B.±8 C.4 D.88.一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为()A. B.13 C.6 D.259.如图,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2=()A.90° B.135° C.270° D.315°10.如图,已知平行四边形中,则()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②S△ABG=S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正确的是_____.(把所有正确结论的序号都选上)12.如图,直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C,且相互平行,若L1、L2的距离为1,L2、L3的距离为2,则正方形的边长为__________.13.某公司测试自动驾驶技术,发现移动中汽车“”通信中每个数据包传输的测量精度大约为0.0000018秒,请将数据0.0000018用科学计数法表示为__________.14.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有▲人.15.如图,在平面直角坐标系中,已知点、、的坐标分别为,,.若点从点出发,沿轴正方向以每秒1个单位长度的速度向点移动,连接并延长到点,使,将线段绕点顺时针旋转得到线段,连接.若点在移动的过程中,使成为直角三角形,则点的坐标是__________.16.计算的倒数是_____.17.用反证法证明命题“三角形中至少有两个锐角”,第一步应假设_____.18.正五边形的内角和等于______度.三、解答题(共66分)19.(10分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接EC,AG.(1)当点E在正方形ABCD内部时,①根据题意,在图1中补全图形;②判断AG与CE的数量关系与位置关系并写出证明思路.(2)当点B,D,G在一条直线时,若AD=4,DG=,求CE的长.(可在备用图中画图)20.(6分)甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.21.(6分)如图,在平面直角坐标系中,的直角边在轴上,.点的坐标为,点的坐标为,是边的中点,函数的图象经过点.(1)求的值;(2)将绕某个点旋转后得到(点,,的对应点分别为点,,),且在轴上,点在函数的图象上,求直线的表达式.22.(8分)某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。其中八(1)班和八(2)班成绩如下:八(1)班:100,100,90,90,90;八(2)班:95,95,95,95,90;(1)八(1)班和八(2)班的优秀率分别是多少?(2)通过计算说明:哪个班成绩相对整齐?(3)若该校共有1000名学生,则通过这两个班级的成绩分析:该校大约有多少学生达到优秀?23.(8分)某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:环数6789人数152(1)填空:10名学生的射击成绩的众数是,中位数是.(2)求这10名学生的平均成绩.(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手?24.(8分)计算或解不等式组:(1)计算.(2)解不等式组25.(10分)某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.(1)求去年购买的文学书和科普书的单价各是多少元;(2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?26.(10分)下面是小东设计的“作矩形”的尺规作图过程,已知:求作:矩形作法:如图,①作线段的垂直平分线角交于点;②连接并延长,在延长线上截取③连接所以四边形即为所求作的矩形根据小东设计的尺规作图过程(1)使用直尺和圆规,补全图形:(保留作图痕迹)(2)完成下边的证明:证明:,,四边形是平行四边形()(填推理的依据)四边形是矩形()(填推理的依据)

参考答案一、选择题(每小题3分,共30分)1、B【解析】

原方程变形后求出△=b2-4ac的值,然后根据计算结果判断方程根的情况.【详解】∵x(x+1)=0,∴x2+x=0,∵a=1,b=1,c=0,∴△=b2-4ac=1-0=1>0∴方程有两个不相等的实数根.故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.2、C【解析】

根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数==1,∴这个正多边形的边数是1.故选:C.【点睛】本题主要考查正多边形内角与外角度数,掌握多边形的外角之和为360°,是解题的关键.3、B【解析】

①通过证明全等判断,②④只能确定为等腰三角形,不能确定为等边三角形,据此判断正误,③通过判断,⑤作于点M通过直角三角形求出E、F坐标从而求得直线解析式.【详解】∵点E、F都在反比例函数的图像上,∴,即,∵四边形是正方形,∴,∴∴,∴,①正确;∵∴,∵k的值不能确定,∴的值不能确定,②错误;∴只能确定为等腰三角形,不能确定为等边三角形,∴,,∴,,④错误;∵,∴,∴,③正确;作于点M,如图∵,为等腰直角三角形,,设,则,在中,,即,解得,∴,在正方形中,,∴,即为等腰直角三角形,∴,设正方形的边长为,则,在中,,即,解得∴,∴∴设直线的解析式为,过点则有解得故直线的解析式为;⑤正确;故正确序号为①③⑤,选.【点睛】本题考查了反比例函数与正方形的综合运用,解题的关键在于利用函数与正方形的相关知识逐一判断正误.4、A【解析】

据直角三角形斜边上中线性质求出斜边长,再根据直角三角形的面积公式求出面积即可.【详解】∵直角三角形的斜边上的中线为6cm,∴斜边为1×6=11(cm),∵直角三角形斜边上的高为5cm,∴此直角三角形的面积为×11×5=30(cm1),故选:A.【点睛】本题考查了直角三角形斜边上中线性质的应用,注意:直角三角形斜边上中线等于斜边的一半.5、C【解析】

延长BC交y轴于点D,由点A的坐标得出OA=2,由平行四边形的性质得出BC=OA=2,由点C的坐标得出OD=1,CD=0.5,求出BD=BC+CD=2.5,即可得出点B的坐标.【详解】延长BC交y轴于点D,如图所示:∵点A的坐标为(2,0),∴OA=2,∵四边形OABC是平行四边形,∴BC=OA=2,∵点C的坐标是(0.5,1),∴OD=1,CD=0.5,∴BD=BC+CD=2.5,∴点B的坐标是(2.5,1);故选:C.【点睛】此题考查坐标与图形性质,平行四边形的性质,解题关键在于作辅助线.6、C【解析】

矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A、菱形、矩形的内角和都为360°,故本选项错误;B、对角互相平分,菱形、矩形都具有,故本选项错误;C、对角线相等菱形不具有,而矩形具有,故本选项正确D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C.【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.7、C【解析】

16表示16的算术平方根,根据二次根式的意义解答即可.【详解】16=故选C.【点睛】主要考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.8、A【解析】试题分析:∵直角三角形的两条直角边的长分别为5,12,

∴斜边为=13,

∵S△ABC=×5×12=×13h(h为斜边上的高),

∴h=.

故选A.9、C【解析】

如图,根据题意可知∠1=90°+∠BNM,∠2=90°+∠BMN,然后结合三角形内角和定理即可推出∠1+∠2的度数.【详解】解:∵△ABC为直角三角形,∠B=90°∴∠1=90°+∠BNM,∠2=90°+∠BMN,∠BMN+∠BNM=90°,

∴∠1+∠2=270°.

故选C.【点睛】本题考查三角形的外角性质、三角形内角和定理,直角三角形的性质,解题的关键在于求证∠1=90°+∠BNM,∠2=90°+∠BMN.10、B【解析】

由平行四边形的邻角互补得到的度数,由平行四边形的对角相等求.【详解】解:因为:平行四边形,所以:,,又因为:所以:,解得:,所以:.故选B.【点睛】本题考查的是平行四边形的性质,掌握平行四边形的角的性质是解题关键.二、填空题(每小题3分,共24分)11、①②④.【解析】

利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到,而,所以,所以△DEF与△ABG不相似,于是可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt△ABF中,AF===8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴=,∴===,而==2,∴≠,∴△DEF与△ABG不相似;所以③错误.∵S△ABG=×6×3=9,S△GHF=×3×4=6,∴S△ABG=S△FGH,所以②正确.故答案是:①②④.【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.12、【解析】

如图,过D作于D,交于E,交于F,根据平行的性质可得,再由同角的余角相等可得,即可证明,从而可得,根据勾股定理即可求出AD的长度.【详解】如图,过D作于D,交于E,交于F∵∴∴由同角的余角相等可得∵∴∴∴故答案为:.【点睛】本题考查了正方形与平行线的问题,掌握平行线的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.13、【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】.

故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、216【解析】由题意得,50个人里面坐公交车的人数所占的比例为:15/50=30%,故全校坐公交车到校的学生有:720×30%=216人.即全校坐公交车到校的学生有216人.15、(5,1),(−1)【解析】

当P位于线段OA上时,显然△PFB不可能是直角三角形;由于∠BPF<∠CPF=90°,所以P不可能是直角顶点,可分两种情况进行讨论:

①F为直角顶点,过F作FD⊥x轴于D,BP=6-t,DP=1OC=4,在Rt△OCP中,OP=t-1,由勾股定理易求得CP=t1-1t+5,那么PF1=(1CP)1=4(t1-1t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF1÷PD=t1-1t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t1-1t+5=6-t,即t=;

②B为直角顶点,得到△PFB∽△CPO,且相似比为1,那么BP=1OC=4,即OP=OB-BP=1,此时t=1.【详解】解:能;

①若F为直角顶点,过F作FD⊥x轴于D,则BP=6-t,DP=1OC=4,

在Rt△OCP中,OP=t-1,

由勾股定理易求得CP1=t1-1t+5,那

么PF1=(1CP)1=4(t1-1t+5);

在Rt△PFB中,FD⊥PB,

由射影定理可求得PB=PF1÷PD=t1-1t+5,

而PB的另一个表达式为:PB=6-t,

联立两式可得t1-1t+5=6-t,即t=,

P点坐标为(,0),

则F点坐标为:(−1);

②B为直角顶点,得到△PFB∽△CPO,且相似比为1,

那么BP=1OC=4,即OP=OB-BP=1,此时t=1,

P点坐标为(1,0).FD=1(t-1)=1,

则F点坐标为(5,1).

故答案是:(5,1),(−1).【点睛】此题考查直角三角形的判定、相似三角形的判定和性质,解题关键在于求有关动点问题时要注意分析题意分情况讨论结果.16、【解析】

求出tan30°,根据倒数的概念计算即可.【详解】,,则的倒数是,故答案为:.【点睛】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.17、同一三角形中最多有一个锐角.【解析】

熟记反证法的步骤,直接填空即可.【详解】用反证法证明同一三角形中至少有两个锐角时,第一步应假设同一三角形中最多有一个锐角,故答案为:同一三角形中最多有一个锐角.【点睛】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.18、540【解析】

过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形∴正五边形的内角和=3180=540°三、解答题(共66分)19、(1)①见解析;②AG=CE,AG⊥CE,理由见解析;(2)CE的长为或【解析】

(1)①根据题意补全图形即可;

②先判断出∠GDA=∠EDC,进而得出△AGD≌△CED,即可得出AG=CE,延长CE分别交AG、AD于点F、H,判断出∠AFH=∠HDC=90°即可得出结论;

(2)分两种情况,①当点G在线段BD的延长线上时,②当点G在线段BD上时,构造直角三角形利用勾股定理即可得出结论.【详解】解:(1)当点E在正方形ABCD内部时,①依题意,补全图形如图1:②AG=CE,AG⊥CE.

理由:

在正方形ABCD,

∴AD=CD,∠ADC=90°,

∵由DE绕着点D顺时针旋转90°得DG,

∴∠GDE=∠ADC=90°,GD=DE,

∴∠GDA=∠EDC

在△AGD和△CED中,,

∴△AGD≌△CED,

∴AG=CE.

如图2,延长CE分别交AG、AD于点F、H,

∵△AGD≌△CED,

∴∠GAD=∠ECD,

∵∠AHF=∠CHD,

∴∠AFH=∠HDC=90°,

∴AG⊥CE.

(2)①当点G在线段BD的延长线上时,如图3所示.

过G作GM⊥AD于M.

∵BD是正方形ABCD的对角线,

∴∠ADB=∠GDM=45°.

∵GM⊥AD,DG=∴MD=MG=2,

∴AM=AD+DM=6

在Rt△AMG中,由勾股定理得:AG==,同(1)可证△AGD≌△CED,

∴CE=AG=

②当点G在线段BD上时,如图4所示,

过G作GM⊥AD于M.

∵BD是正方形ABCD的对角线,

∴∠ADG=45°

∵GM⊥AD,DG=∴MD=MG=2,

∴AM=AD-MD=2

在Rt△AMG中,由勾股定理得:AG==,同(1)可证△AGD≌△CED,

∴CE=AG=.故CE的长为或.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,解(1)的关键是判断出△AGD≌△CED,解(2)的关键是构造直角三角形,是一道中考常考题.20、问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【解析】

问:甲、乙两公司各有多少名员工?设乙公司有x名员工,则甲公司有1.2x名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x名员工,则甲公司有1.2x名员工,依题意,得:-=20,解得:x=25,经检验,x=25是原分式方程的解,且符合题意,∴1.2x=30答:甲公司有30名员工,乙公司有25名员工.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21、(1)5;(4)y=4x-1.【解析】

(1)根据直角三角形的性质和坐标与图形的特点求得点的坐标,将其代入反比例函数解析式求得的值;(4)根据旋转的性质推知:,故其对应边、角相等:,,,由函数图象上点的坐标特征得到:,.结合得到,利用待定系数法求得结果.【详解】(1)∵Rt△ABC的直角边AB在x轴上,∠ABC=90°,点C的坐标为(5,4),∴点B的坐标为(5,0),CB=4.∵M是BC边的中点,∴点M的坐标为(5,4).∵函数的图像进过点M,∴k=5×4=5.(4)∵△ABC绕某个点旋转180°后得到△DEF,∴△DEF≌△ABC.∴DE=AB,EF=BC,∠DEF=∠ABC=90°.∵点A的坐标为(1,0),点B的坐标为(5,0),∴AB=4.∴DE=4.∵EF在y轴上,∴点D的横坐标为4.∵点D在函数的图象上,当x=4时,y=5.∴点D的坐标为(4,5).∴点E的坐标为(0,5).∵EF=BC=4,∴点F的坐标为(0,-1).设直线DF的表达式为y=ax+b,将点D,F的坐标代入,得解得.∴直线DF的表达式为y=4x-1.【点睛】本题考查了待定系数法求一次函数解析式,反比例函数图象上点的坐标特征,旋转的性质.解题时,注意函数思想和数形结合数学思想的应用.22、(1)八(1)班的优秀率:,八(2)班的优秀率:;(2)八(2)班的成绩相对整齐;(3)600人.【解析】

(1)用95分或以上的人数除以总人数即可分别求出八(1)班和八(2)班的优秀率;(2)先分别求出八(1)班和八(2)班的平均数,再计算它们的方差,然后根据方差的定义,方差越小成绩越整齐得出答案;(3)用该校学生总数乘以样本优秀率即可.【详解】解:(1)八(1)班的优秀率是:×100%=40%,八(2)班的优秀率是:×100%=80%;(2)八(1)班的平均成绩是:(100+100+90+90+90)=94,方差是:[2×(100−94)2+3×(90−94)2]=24;八(2)班的平均成绩是:(95+95+95+95+90)=94,方差是:[4×(95−94)2+(90−94)2]=4;∵4<24,即八(2)班的方差<八(1)班的方差,∴八(2)班的成绩相对整齐;(3)1000×=600(人).答:该校大约有600名学生达到优秀.【点睛】本题考查方差的定义:一般地设n个数据x1,x2,…,xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了利用样本估计总体.23、(1)7环,7环;(2)7.5环;(3)100名【解析】

(1)根据众数、中位数的意义将10名学生的射击成绩排序后找出第5、6位两个数的平均数即为中位数,出现次数最多的数是众数.(2)根据平均数的计算方法进行计算即可,(3)样本估计总体,用样本中优秀人数的所占的百分比估计总体中优秀的百分比,用总人数乘以这个百分比即可.【详解】解:(1)射击成绩出现次数最多的是7环,共出现5次,因此众数是7环,射击成绩从小到大排列后处在第5、6位的数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论