安徽省合肥市肥东四中学九级2024届八年级下册数学期末统考模拟试题含解析_第1页
安徽省合肥市肥东四中学九级2024届八年级下册数学期末统考模拟试题含解析_第2页
安徽省合肥市肥东四中学九级2024届八年级下册数学期末统考模拟试题含解析_第3页
安徽省合肥市肥东四中学九级2024届八年级下册数学期末统考模拟试题含解析_第4页
安徽省合肥市肥东四中学九级2024届八年级下册数学期末统考模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市肥东四中学九级2024届八年级下册数学期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.22.已知一次函数y=(2m-1)x+1的图象上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,那么m的取值范围是()A.m< B.m> C.m<2 D.m>-23.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是()A. B.C. D.4.一组数中,无理数的个数是()A.2 B.3 C.4 D.55.某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A.6,6 B.7,6 C.7,8 D.6,86.己知一次函数,若随的增大而增大,则的取值范围是()A. B. C. D.7.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5 B.10 C.12 D.138.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12m,塔影长DE=18m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为()A.24m B.22m C.20m D.18m9.以下列各组数为三角形的边长,能构成直角三角形的是()A.1,2,3 B.1,1, C.2,4,5 D.6,7,810.如图,在矩形中,边的长为,点分别在上,连结,若四边形是菱形,且,则边的长为()A. B. C. D.11.已知一组数据1,2,3,n,它们的平均数是2,则这一组数据的方差为()A.1 B.2 C.3 D.112.已知,若当时,函数的最大值与最小值之差是1,则a的值为()A. B. C.2 D.3二、填空题(每题4分,共24分)13.甲、乙两车从地出发到地,甲车先行半小时后,乙车开始出发.甲车到达地后,立即掉头沿着原路以原速的倍返回(掉头的时间忽略不计),掉头1个小时后甲车发生故障便停下来,故障除排除后,甲车继续以加快后的速度向地行驶.两车之间的距离(千米)与甲车出发的时间(小时)之间的部分函数关系如图所示.在行驶过程中,甲车排除故障所需时间为______小时.14.关于x的一元二次方程x2+4x+2k﹣1=0有两个实数根,则k的取值范围是_____.15.计算:3﹣的结果是_____.16.如图,,两条直线与这三条平行线分别交于点、、和、、.已知,,,的长为_______.17.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:1.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:已知x3=10648,且x为整数∵1000=103<10648<1003=1000000,∴x一定是______位数∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是_____;∴x=______.18.如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若ΔACD的面积为4,则图中阴影部分两个三角形的面积和为三、解答题(共78分)19.(8分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)要使商场平均每天盈利1600元,可能吗?请说明理由.20.(8分)甲乙两个工程队分别同时开挖两条600米长的管道,所挖管道长度(米)与挖掘时间(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前1天完成任务;④当时,甲乙两队所挖管道长度相同,不正确的个数有()A.4个 B.3个 C.2个 D.1个21.(8分)如图(1),ΔABC为等腰三角形,AB=AC=a,P点是底边BC上的一个动点,PD∕∕AC,PE∕∕AB.(1)用a表示四边形ADPE的周长为;(2)点P运动到什么位置时,四边形ADPE是菱形,请说明理由;(3)如果ΔABC不是等腰三角形图(2),其他条件不变,点P运动到什么位置时,四边形ADPE是菱形(不必说明理由).22.(10分)为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:甲林场乙林场购树苗数量销售单价购树苗数量销售单价不超过1000棵时4元/棵不超过2000棵时4元/棵超过1000棵的部分3.8元/棵超过2000棵的部分3.6元/棵设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元)、y乙(元).(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为元,若都在乙林场购买所需费用为元;(2)分别求出y甲、y乙与x之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?23.(10分)如图1,在平画直角坐标系中,直线交轴于点,交轴于点,将直线沿轴向右平移2个单位长度交轴于,交轴于,交直线于.(1)直接写出直线的解析式为______,______.(2)在直线上存在点,使是的中线,求点的坐标;(3)如图2,在轴正半轴上存在点,使,求点的坐标.24.(10分)在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为个单位长度,按要求作图:①画出关于原点的中心对称图形;②画出将绕点逆时针旋转得到③请在网格内过点画一条直线将平分成两个面积相等的部分.25.(12分)在正方形中,点是边的中点,点是对角线上的动点,连接,过点作交正方形的边于点;(1)当点在边上时,①判断与的数量关系;②当时,判断点的位置;(2)若正方形的边长为2,请直接写出点在边上时,的取值范围.26.如图,在中,点是的中点,连接并延长,交的延长线于点F.求证:.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.故选B.2、B【解析】分析:先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m-1>0,解不等式即可求解.详解:∵当x1<x2时,有y1<y2∴y随x的增大而增大∴2m-1>0,∴m>.故选:B.点睛:本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.3、B【解析】

由题意分别表达出原来生产480台机器所需时间和现在生产600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可.【详解】解:设原计划每天生产x台机器,根据题意得:.故选B.【点睛】读懂题意,用含x的代数式表达出原来生产480台机器所需时间为天和现在生产600台机器所需时间为天是解答本题的关键.4、B【解析】

先将二次根式换成最简二次根式,再根据无限不循环小数是无理数的定义进行判断选择即可.【详解】因为,所以是无理数,共有3个,故答案选B.【点睛】本题考查的是无理数的定义,能够将二次根式化简是解题的关键.5、B【解析】

首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.【详解】解:把已知数据按从小到大的顺序排序后为5元,1元,1元,7元,8元,9元,10元,∴中位数为7∵1这个数据出现次数最多,∴众数为1.故选B.【点睛】本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.众数只要找次数最多的即可.6、A【解析】

根据一次函数的性质分析解答即可,一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量,当k>0时,直线必过一、三象限,y随x的增大而增大;当k<0时,直线必过二、四象限,y随x的增大而减小.【详解】解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,∴k﹣1>0,解得k>1,故选A.【点睛】一次函数的性质是本题的考点,熟练掌握其性质是解题的关键.7、D【解析】

ED垂直平分AB,BE=AE,在通过△ACE的周长为30计算即可【详解】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.【点睛】本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.8、A【解析】

过点D构造矩形,把塔高的影长分解为平地上的BD,斜坡上的DE.然后根据影长的比分别求得AG,GB长,把它们相加即可.【详解】解:过D作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G.由题意得:.∴DF=DE×1.6÷2=14.4(m).

∴GF=BD=CD=6m.又∵.∴AG=1.6×6=9.6(m).

∴AB=14.4+9.6=24(m).

答:铁塔的高度为24m.故选A.9、B【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A、12+22≠32,故不是直角三角形,故此选项错误;B、12+12=()2,故是直角三角形,故此选项正确;C、22+42≠52,故不是直角三角形,故此选项错误;D、62+72≠82,故不是直角三角形,故此选项错误.故选B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10、C【解析】

根据菱形的性质得出,,,再根据矩形的性质以及全等三角形的性质得出,,继而推出答案.【详解】解:四边形为菱形,,四边形为矩形又.故选:C.【点睛】本题考查的知识点有菱形的性质、矩形的性质、全等三角形的判定及性质、含30度角的直角三角形的性质,利用已知条件推出是解此题的关键.11、D【解析】

先根据平均数的定义确定出n的值,再根据方差的计算公式计算即可.【详解】解:∵数据1,2,3,n的平均数是2,∴(1+2+3+n)÷4=2,∴n=2,∴这组数据的方差是:1故选择:D.【点睛】此题考查了平均数和方差的定义,平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.12、C【解析】

根据反比例函数的性质和题意,利用分类讨论的数学思想可以求得a的值,本题得以解决.【详解】解:当时,函数中在每个象限内,y随x的增大而增大,∵当1≤x≤2时,函数的最大值与最小值之差是1,∴,得a=-2(舍去),当a>0时,函数中在每个象限内,y随x的增大而减小,∵当1≤x≤2时,函数的最大值与最小值之差是1,∴,得a=2,故选择:C.【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质和分类讨论的数学思想解答.二、填空题(每题4分,共24分)13、【解析】

画出符合题意的行程信息图,利用图中信息列方程组求出甲乙的速度,再构建方程解决问题即可.【详解】解:设去时甲的速度为km/h,乙的速度为km/h,则有,解得,∴甲返回时的速度为km/h,设甲修车的时间为小时,则有,解得.故答案为.【点睛】本题考查函数图象问题,解题的关键是读懂图象信息,还原行程信息图,灵活运用所学知识解决问题.14、k≤【解析】

根据方程有两个实数根可以得到根的判别式,进而求出的取值范围.【详解】解:由题意可知:解得:故答案为:【点睛】本题考查了根的判别式的逆用---从方程根的情况确定方程中待定系数的取值范围,属中档题型,解题时需注意认真理解题意.15、2.【解析】

直接利用二次根式的加减运算法则计算得出答案.【详解】解:-=.故答案为:.【点睛】此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.16、【解析】

根据平行线分线段成比例定理得到比例式,代入计算即可.【详解】解:∵l1∥l2∥l3,∴,即,解得,EF=,故答案为:.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17、两;2;2;22【解析】

根据立方和立方根的定义逐一求解可得.【详解】已知,且为整数,,一定是两位数,的个位数字是,的个位数字一定是,划去后面的三位得,,的十位数字一定是,.故答案为:两、、、.【点睛】本题主要考查立方根,解题的关键是掌握立方与立方根的定义.18、1【解析】

根据平行四边形的性质求出AD=BC,DC=AB,证△ADC≌△CBA,推出△ABC的面积是1,求出AC×AE=8,即可求出阴影部分的面积.【详解】∵四边形ABCD是平行四边形,∴AD=BC,DC=AB,∵在△ADC和△CBA中AD=BCDC=AB∴△ADC≌△CBA,∵△ACD的面积为1,∴△ABC的面积是1,即12AC×AE=8,∴阴影部分的面积是8﹣1=1,故答案为1.【点睛】本题考查了矩形性质,平行四边形性质,全等三角形的性质和判定的应用,主要考查学生运用面积公式进行计算的能力,题型较好,难度适中.三、解答题(共78分)19、(1)每件衬衫应降价1元.(2)不可能,理由见解析【解析】

(1)利用衬衣每件盈利×平均每天售出的件数=每天销售这种衬衣利润,列出方程解答即可.

(2)同样列出方程,若方程有实数根则可以,否则不可以.【详解】(1)设每件衬衫应降价x元.

根据题意,得(40-x)(1+2x)=110

整理,得x2-30x+10=0

解得x1=10,x2=1.

∵“扩大销售量,减少库存”,

∴x1=10应略去,

∴x=1.

答:每件衬衫应降价1元.

(2)不可能.理由如下:

令y=(40-x)(1+2x),当y=1600时,(40-x)(1+2x)=1600整理得x2-30x+400=0

∵△=900-4×400<0,方程无实数根.

∴商场平均每天不可能盈利1600元.【点睛】此题主要考查了一元二次方程的应用和根的判别式,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.20、D【解析】

根据函数图像中数据一次计算出各小题,从而可以解答本题.【详解】①项,根据图象可得,甲队6天挖了600米,故甲队每天挖:600÷6=100(米),故①项正确.②项,根据图象可知,乙队前两天共挖了300米,到第6天挖了500米,所以在6-2=4天内一共挖了:200(米),故开挖两天后每天挖:200÷4=50(米),故②项正确.③项,根据图象可得,甲队完成任务时间是6天,乙队完成任务时间是:2+300÷50=8(天),故甲队比乙队提前8-6=2(天)完成任务,故③项错误;④项,根据①,当x=4时,甲队挖了:400(米),根据②,乙队挖了:300+2×50=400(米),所以甲、乙两队所挖管道长度相同,故④项正确.综上所述,不正确的有③,共1个.故本题正确答案为D.【点睛】本题考查的是函数图像,熟练掌握函数图像是解题的关键.21、(1)2a;(2)当P为BC中点时,四边形ADPE是菱形,见解析;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,理由见解析.【解析】

(1)根据平行线的性质和等腰三角形的性质证明∠B=∠DPB,∠C=∠EPC,进而可得DB=DP,PE=EC,从而可得四边形ADPE的周长=AD+DP+PE+AE=AB+AC;(2)当P运动到BC中点时,四边形ADPE是菱形;首先证明四边形ADPE是平行四边形,再证明DP=PE即可得到四边形ADPE是菱形;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,首先证明四边形ADPE是平行四边形,再根据平行线的性质可得∠1=∠3,从而可证出∠2=∠3,进而可得AE=EP,然后可得四边形ADPE是菱形.【详解】(1)∵PD∥AC,PE∥AB,∴∠DPB=∠C,∠EPC=∠B,∵AB=AC,∴∠B=∠C,∴∠B=∠DPB,∠C=∠EPC,∴DB=DP,PE=EC,∴四边形ADPE的周长是:AD+DP+PE+AE=AB+AC=2a;(2)当P运动到BC中点时,四边形ADPE是菱形;∵PD∥AC,PE∥AB,∴四边形ADPE是平行四边形,∴PD=AE,PE=AD,∵PD∥AC,PE∥AB,∴∠DPB=∠C,∠EPC=∠B,∵P是BC中点,∴PB=PC,在△DBP和△EPC中,∠B=∠EPCBP=CP∠C=∠DPB∴△DBP≌△EPC(ASA),∴DP=EC,∵EC=PE,∴DP=EP,∴四边形ADPE是菱形;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,∵PD∥AC,PE∥AB,∴四边形ADPE是平行四边形,∵AP平分∠BAC,∴∠1=∠2,∵AB∥EP,∴∠1=∠3,∴∠2=∠3,∴AE=EP,∴四边形ADPE是菱形.【点睛】此题考查菱形的判定,等腰三角形的性质,解题关键在于证明∠B=∠DPB,∠C=∠EPC.22、(1)5900,6000;(2)见解析;(3)当0≤x≤1000或x=3000时,两家林场购买一样,当1000<x<3000时,到甲林场购买合算;当x>3000时,到乙林场购买合算.【解析】试题分析:(1)由单价×数量就可以得出购买树苗需要的费用;

(2)根据分段函数的表示法,甲林场分或两种情况.乙林场分或两种情况.由由单价×数量就可以得出购买树苗需要的费用表示出甲、乙与之间的函数关系式;

(3)分类讨论,当,时,时,表示出甲、乙的关系式,就可以求出结论.试题解析:(1)由题意,得.甲=4×1000+3.8(1500﹣1000)=5900元,乙=4×1500=6000元;故答案为5900,6000;(2)当时,甲时.甲∴甲(取整数).当时,乙当时,乙∴乙(取整数).(3)由题意,得当时,两家林场单价一样,∴到两家林场购买所需要的费用一样.当时,甲林场有优惠而乙林场无优惠,∴当时,到甲林场优惠;当时,甲乙当甲=乙时解得:∴当时,到两家林场购买的费用一样;当甲<乙时,时,到甲林场购买合算;当甲>乙时,解得:∴当时,到乙林场购买合算.综上所述,当或时,两家林场购买一样,当时,到甲林场购买合算;当时,到乙林场购买合算.23、(1),22;(2);(3)【解析】

(1)根据平移规律“上加下减、左加右减”进行计算可得到平移后的解析式,再分别求出A,B,C的坐标,即可计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论