版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省长沙市长雅中学数学八年级下册期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2C.3 D.42.一次函数y=2x﹣1的图象大致是()A. B. C. D.3.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A.x2–3=(10–x)2 B.x2–32=(10–x)2 C.x2+3=(10–x)2 D.x2+32=(10–x)24.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.505.若一个直角三角形的两直角边长分别为3和4,则下列说法不正确的是()A.这个直角三角形的斜边长为5B.这个直角三角形的周长为12C.这个直角三角形的斜边上的高为D.这个直角三角形的面积为126.下面四个应用图标中,属于中心对称图形的是()A. B. C. D.7.如图,是用形状、大小完全相同的小菱形组成的图案,第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,……,按照此规律,第个图形中小菱形的个数用含有的式子表示为()A. B. C. D.8.矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为()A.12 B.24 C.48 D.509.已知平面上四点,,,,一次函数的图象将四边形ABCD分成面积相等的两部分,则A.2 B. C.5 D.610.下列图形中的曲线不表示y是x的函数的是()A. B. C. D.11.如图,在中,点、、分别在边、、上,且,.下列说法中不正确的是()A.四边形是平行四边形B.如果,那么四边形是矩形.C.如果平分,那么四边形是正方形.D.如果且,那么四边形是菱形.12.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A.6cm B.5cm C. D.二、填空题(每题4分,共24分)13.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是________.14.如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是______.15.已知一次函数y=mx+n(m≠0)与x轴的交点为(3,0),则方程mx+n=0(m≠0)的解是x=________.16.在方程组中,已知,,则a的取值范围是______.17.一个等腰三角形一边长为2,另一边长为5,这个三角形第三边的长是_________18.如下图,用方向和距离表示火车站相对于仓库的位置是__________.三、解答题(共78分)19.(8分)某校为了解八年级学生课外阅读情况,随机抽取20名学生平均每周用于课外阅读读的时间(单位:),过程如下:(收集数据)30608150401101301469010060811201407081102010081(整理数据)课外阅读时间等级人数38(分析数据)平均数中位数众数80请根据以上提供的信息,解答下列问题:(1)填空:______,______,______,______;(2)如果每周用于课外读的时间不少于为达标,该校八年级现有学生200人,估计八年级达标的学生有多少人?20.(8分)某学校积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对所在社区的一些区域进行绿化改造,已知乙工程队每小时能完成的绿化面积是甲工程队每小时能完成的绿化面积的1.5倍,并且乙工程队完成200平方米的绿化面积比甲工程队完成200平方米的绿化面积少用2小时,甲工程队每小时能完成多少平方米的绿化面积?21.(8分)在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点时,求证:BE=EF.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请证明;若不成立,说明理由.22.(10分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕着矩形ABCD(AB<BC)的对角线交点O旋转(如图①→②→③),图中M、N分别为直角三角板的直角边与矩形ABCD的边CD、BC的交点.(1)该学习小组中一名成员意外地发现:在图①(三角板的一直角边与OD重合)中,BN1=CD1+CN1;在图③(三角板的一直角边与OC重合)中,CN1=BN1+CD1.请你对这名成员在图①和图③中发现的结论选择其一说明理由.(1)试探究图②中BN、CN、CM、DM这四条线段之间的关系,写出你的结论,并说明理由.23.(10分)计算:(1);(2)(﹣)(+)+(﹣1)224.(10分)如图,,,垂足为E,,求的度数.25.(12分)一次函数y=kx+b()的图象经过点,,求一次函数的表达式.26.如图,菱形中,是的中点,,.(1)求对角线,的长;(2)求菱形的面积.
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据平行线的性质以及角平分线的性质证明∠ADE=∠AED,根据等角对等边,即可求得AE的长,在直角△ABE中,利用勾股定理求得BE的长,则CE的长即可求解.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE=AE2∴CE=BC﹣BE=AD﹣BE=10﹣8=1.故选B.考点:矩形的性质;角平分线的性质.2、B【解析】
根据一次函数的性质,判断出k和b的符号即可解答.【详解】由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选B.【点睛】本题考查了一次函数y=kx+b图象所过象限与k,b的关系,当k>0,b<0时,函数图象经过一、三、四象限.3、D【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10-x)尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x尺,则斜边为(10-x)尺,根据勾股定理得:x1+31=(10-x)1.故选D.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.4、D【解析】试题分析:根据题意可知AB为斜边,因此可根据勾股定理可知AB2=A故选D.点睛:此题主要考查了勾股定理的应用,解题关键是根据勾股定理列出直角三角形三边关系的式子,然后化简代换即可.5、D【解析】
先根据勾股定理求出斜边长,再根据三角形面积公式,三角形的性质即可判断.【详解】解:根据勾股定理可知,直角三角形两直角边长分别为3和4,则它的斜边长是,周长是3+4+5=12,斜边长上的高为,面积是3×4÷2=1.故说法不正确的是D选项.故选:D.【点睛】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.但本题也用到了三角形的面积公式,和周长公式.6、A【解析】
根据中心对称图形的概念进行判断即可.【详解】解:A、图形是中心对称图形;B、图形不是中心对称图形;C、图形不是中心对称图形;D、图形不是中心对称图形,故选:A.【点睛】本题考查的是中心对称图形的概念.掌握定义是解题的关键,中心对称图形是要寻找对称中心,旋转180度后能与自身重合.7、B【解析】
根据图形的变化规律即可求出第个图形中小菱形的个数.【详解】根据第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,每次增加3个菱形,故第个图形中小菱形的个数为1+3(n-1)=个,故选B.【点睛】此题主要考查图形的规律探索,解题的关键是根据图形的变化找到规律进行求解.8、C【解析】
设矩形的两邻边长分别为3x、4x,根据勾股定理可得(3x)2+(4x)2=102,解方程求得x的值,即可求得矩形两邻边的长,根据矩形的面积公式即可求得矩形的面积.【详解】∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为10,∴(3x)2+(4x)2=102,解得:x=2,∴矩形的两邻边长分别为:6,8;∴矩形的面积为:6×8=1.故选:C.【点睛】本题考查了矩形的性质及勾股定理,利用勾股定理求得矩形两邻边的长是解决问题的关键.9、B【解析】
根据题意四边形ABCD是矩形,直线只要经过矩形对角线的交点,即可得到k的值.【详解】,,,,,,四边形ABCD是平行四边形,,四边形ABCD是矩形,对角线AC、BD的交点坐标为,直线经过点时,直线将四边形ABCD的面积分成相等的两部分,,.故选:B.【点睛】本题考查矩形的判定和性质、一次函数图象上点的坐标特征等知识,掌握中心对称图形的性质是解决问题的关键.10、C【解析】
函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.故选C【点睛】考点:函数的定义11、C【解析】
根据特殊的平行四边形的判定定理来作答.【详解】解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.故选:C.【点睛】本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定.12、B【解析】
∵菱形的两条对角线分别为5cm和10cm,∴菱形的面积为:(cm2),设正方形的边长为cm,则,解得:(cm).故选B.二、填空题(每题4分,共24分)13、-1≤a≤【解析】
根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.【详解】解:反比例函数经过点A和点C.当反比例函数经过点A时,即=3,解得:a=±(负根舍去);当反比例函数经过点C时,即=3,解得:a=1±(负根舍去),则-1≤a≤.故答案为:-1≤a≤.【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14、【解析】
先根据得出,再求出的度数,由即可得出结论.【详解】,,,,,.故答案为:.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.15、1【解析】
直接根据函数图象与x轴的交点进行解答即可.【详解】∵一次函数y=mx+n与x轴的交点为(1,0),∴当mx+n=0时,x=1.故答案为:1.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.16、【解析】
先根据加减消元法解二元一次方程组,解得,再根据,,可列不等式组,解不等式组即可求解.【详解】方程组,由①+②,可得:,解得,把代入①可得:,因为,,所以,所以不等式组的解集是,故答案为:.【点睛】本题主要考查解含参数的二元一次方程组和一元一次不等式组,解决本题的关键是要熟练掌握解含参数的二元一次方程的解法.17、1【解析】解:分两种情况:当腰为2时,2+2<1,所以不能构成三角形;当腰为1时,2+1>1,所以能构成三角形,所以这个三角形第三边的长是1.故答案为:1.点睛:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.18、东偏北20°方向,距离仓库50km【解析】
根据方位角的概念,可得答案.【详解】解:火车站相对于仓库的位置是东偏北20°方向,距离仓库50km,故答案为:东偏北20°方向,距离仓库50km.【点睛】本题考查了方向角的知识点,解答本题的关键是注意是火车站在仓库的什么方向.三、解答题(共78分)19、(1)a=5,b=4,m=81,n=8;(2)120人.【解析】
根据中位数、众数的定义可以填表格,利用样本和总体之间的比例关系可以估计或计算得到(1)(2)结果.【详解】(1)由统计表收集数据可知,,,;(2)(人).答:估计达标的学生有120人.【点睛】此题考查中位数、众数的定义,用样本估计总体,解题关键在于看懂图中数据20、甲工程队每小时能完成平方米的绿化面积.【解析】
设甲工程队每小时能完成x平方米的绿化面积,则乙工程队每小时能完成1.5x平方米的绿化面积,根据工作时间=工作总量÷工作效率结合乙工程队完成200平方米的绿化面积比甲工程队完成200平方米的绿化面积少用2小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设甲工程队每小时能完成x平方米的绿化面积,则乙工程队每小时能完成的绿化面积是1.5x平方米,则有,解得:x=,经检验是原方程的根,所以,甲工程队每小时能完成平方米的绿化面积.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21、(1)详见解析;(2)结论成立,理由详见解析.【解析】
(1)由四边形ABCD是菱形,∠ABC=60°,可知△ABC是等边三角形,因为E是线段AC的中点,所以∠CBE=∠ABE=30°,AE=CE,由AE=CF得CE=CF可知∠CEF=∠F由∠ACF=120°可知∠F=30°∴∠F=∠CBE=30°。即可证明BE=EF.(2)过点E作EG∥BC交AB于点G,可得∠AGE=∠ABC=60°,因为∠BAC=60°,所以△AGE是等边三角形,可知AG=AE=GE,∠AGE=60°,可知BG=CE,因为CF=AE,所以GE=CF,进而可证明△BGE≌△ECF,即可证明BE=EF.【详解】(1)∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∵∠ECF=120°,∴∠F=∠CEF=30°∴∠CBE=∠F=30°,∴BE=EF;(2)结论成立;理由如下:过点E作EG∥BC交AB于点G,如图2所示:∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,AB∥CD,∴∠ACD=60°,∠DCF=∠ABC=60°,∴∠ECF=120°,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,,又∵CF=AE,∴GE=CF,∵在△BGE和△CEF中,BG=CE,∠BGE=∠ECF,GE=CF,∴△BGE≌△ECF(SAS),∴BE=EF.【点睛】本题考查菱形的性质,等边三角形,全等三角形的性质,熟练掌握相关知识是解题关键.22、(1)见解析;(1)见解析.【解析】
(1)连接DN,根据矩形得出OB=OD,根据线段垂直平分线得出BN=DN,根据勾股定理求出DN的平方,即可求出答案;(1)延长NO交AD于点P,连接PM,MN,证△BNO≌△DPO,推出OP=ON,DP=BN,根据线段垂直平分线求出PM=MN,根据勾股定理求出即可.【详解】(1)选①.证明如下:连接DN,∵四边形ABCD是矩形,∴OB=OD,∵∠DON=90°,∴BN=DN,∵∠BCD=90°,∴DN1=CD1+CN1,∴BN1=CD1+CN1;(1)延长NO交AD于点P,连接PM,MN,∵四边形ABCD是矩形,∴OD=OB,AD∥BC,∴∠DPO=∠BNO,∠PDO=∠NBO,在△BON和△DOP中,∵,∴△BON≌△DOP(AAS),∴ON=OP,B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中数学第一讲不等式和绝对值不等式一不等式1不等式的基本性质学案含解析新人教A版选修4-5
- 重复经颅磁刺激与护理
- 辐射4传奇装备附魔方法武器护具传奇属性代码
- 矿山开采塔吊租赁合同模板
- 互联网业机构装饰施工合同
- 水表验收配件水电班组施工合同
- 烧烤店主体施工合同
- 泥水工施工合同
- 房地产销售聘用合同书
- 美甲店高级顾问聘用合同
- 价值流图析讲义
- (完整)交管12123学法减分考试题库及参考答案(通用版)
- 沥青混合料最大理论密度计算法
- 部编版小学语文四年级上册第六单元教材分析解读课件
- 第一章-马克思主义的诞生-(《马克思主义发展史》课件)
- SY∕T 6336-2019 沉积岩重矿物分离与鉴定方法
- STEMI溶栓流程图(第一版)
- 小学四年级英语教师发言稿6篇
- x中国公司渠道连锁管理体系框架设计方案简介课件
- 共同愿景-团队学习-系统思考培训课件
- 三高共管六病同防诊疗路径与一体化服务指南(2022版)20-39-30
评论
0/150
提交评论