2024年桂林市八年级数学第二学期期末达标检测试题含解析_第1页
2024年桂林市八年级数学第二学期期末达标检测试题含解析_第2页
2024年桂林市八年级数学第二学期期末达标检测试题含解析_第3页
2024年桂林市八年级数学第二学期期末达标检测试题含解析_第4页
2024年桂林市八年级数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年桂林市八年级数学第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若一个三角形的三边长为,则使得此三角形是直角三角形的的值是()A. B. C. D.或2.已知:1号探测气球从海拔5m处匀速上升,同时,2号探测气球从海拔15m处匀速上升,且两个气球都上升了1h.两个气球所在位置的海拔y(单位:m)与上升时间x(单位:min)之间的函数关系如图所示,根据图中的信息,下列说法:①上升20min时,两个气球都位于海拔25m的高度;②1号探测气球所在位置的海拔关于上升时间x的函数关系式是y=x+5(0≤x≤60);③记两个气球的海拔高度差为m,则当0≤x≤50时,m的最大值为15m.其中,说法正确的个数是()A.0 B.1 C.2 D.33.若=,则的值是()A. B. C. D.4.已知a是方程2x2﹣4x﹣2019=0的一个解,则a2﹣2a=()A.2019 B.4038 C. D.5.在如图所示的计算程序中,y与x之间的函数关系式所对应的图象是()A. B.C. D.6.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为()A.8 B.9 C.5+ D.5+7.己知直角三角形一个锐角60°,斜边长为2,那么此直角三角形的周长是()A. B.3 C.+2 D.+38.如图,直线经过点A(a,)和点B(,0),直线经过点A,则当时,x的取值范围是()A.x>-1 B.x<-1 C.x>-2 D.x<-29.对于一次函数y=-2x+4,下列结论错误的是()A.函数的图象与x轴的交点坐标是0,4B.函数值随自变量的增大而减小C.函数的图象不经过第三象限D.函数的图象向下平移4个单位长度得到y=-2x的图象10.如果,那么下列各式一定不成立的是()A. B. C. D.二、填空题(每小题3分,共24分)11.今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.12.对于代数式m,n,定义运算“※”:m※n=(mn≠0),例如:4※2=.若(x﹣1)※(x+2)=,则2A﹣B=_____.13.如果是关于的方程的增根,那么实数的值为__________14.如图,已知:∠MON=30°,点A、A、A…在射线ON上,点B、B、B…在射线OM上,△ABA、△ABA、△ABA…均为等边三角形,若OA=1,则△ABA的边长为____15.在实数范围内定义一种运算“﹡”,其规则为a﹡b=a2﹣b2,根据这个规则,方程(x+1)﹡3=0的解为_____.16.若a4·ay=a19,则y=_____________.17.若b为常数,且﹣bx+1是完全平方式,那么b=_____.18.写出一个经过二、四象限的正比例函数_________________________.三、解答题(共66分)19.(10分)如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=1.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(6分)如图,在平面直角坐标系中,直线与、轴分别交于、两点.点为线段的中点.过点作直线轴于点.(1)直接写出的坐标;(2)如图1,点是直线上的动点,连接、,线段在直线上运动,记为,点是轴上的动点,连接点、,当取最大时,求的最小值;(3)如图2,在轴正半轴取点,使得,以为直角边在轴右侧作直角,,且,作的角平分线,将沿射线方向平移,点、,平移后的对应点分别记作、、,当的点恰好落在射线上时,连接,,将绕点沿顺时针方向旋转后得,在直线上是否存在点,使得为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(6分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于C、D两点,C点的坐标是(4,-1),D点的横坐标为-1.(1)求反比例函数与一次函数的关系式;(1)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值?22.(8分)房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了名学生;(2)补全两幅统计图;(3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择“小组合作学习”?23.(8分)A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡,从A城运往C、D两乡运肥料的费用分别是每吨20元和25元,从B城运往C、D两乡运肥料的费用分别为每吨15元和24元,现在C乡需要肥料240吨,D乡需要肥料260吨,设A城运往C乡的肥料量为x吨,总运费为y元.(1)写出总运费y元关于x的之间的关系式;(2)当总费用为10200元,求从A、B城分别调运C、D两乡各多少吨?(3)怎样调运化肥,可使总运费最少?最少运费是多少?24.(8分)如图,以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接BE、DF.(1)当四边形ABCD为正方形时(如图1),则线段BE与DF的数量关系是.(2)当四边形ABCD为平行四边形时(如图2),问(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.25.(10分)如图,四边形ABCD是平行四边形,EB⊥BC于B,ED⊥CD于D,BE、DE相交于点E,若∠E=62º,求∠A的度数.26.(10分)无锡阳山水蜜桃上市后,甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,甲超市销售方案是:将水蜜桃按分类包装销售,其中挑出优质大个的水蜜桃400箱,以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.乙超市的销售方案是:不将水蜜桃分类,直接销售,价格按甲超市分类销售的两种水蜜桃售价的平均数定价.若两超市将水蜜桃全部售完,其中甲超市获利42000元(其它成本不计).问:(1)水蜜桃进价为每箱多少元?(2)乙超市获利多少元?哪种销售方式更合算?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据勾股定理即可求解.【详解】当4为斜边时,x=当x为斜边是,x=故选D.【点睛】此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.2、D【解析】

根据一次函数的图象和性质,由两点坐标分别求出1、2号探测球所在位置的海拔y关于上升时间x的函数关系式,结合图象即可判定结论是否正确.【详解】从图象可知,上升20min时,两个气球都位于海拔25m的高度,故①正确;1号探测气球的图象过设=kx+b,代入点坐标可求得关系式是=x+5(0≤x≤60),同理可求出,2号球的函数解析式为,故②正确;利用图象可以看出,20min后,1号探测气球的图象始终在2号探测气球的图象的上方,而且都随着x的增大而增大,所以当x=50时,两个气球的海拔高度差m有最大值,此时m=,代入x=50,得m=15,故③正确.【点睛】考查了一次函数的图象和性质,一次函数解析式的求法,图象增减性的综合应用,熟记图象和性质特征是解题的关键.3、A【解析】

先设a=2k,则b=5k,然后将它们分别代入,计算即可求出其值即可.【详解】解:∵=,设a=2k,则b=5k,

∴=.

故选A.【点睛】本题考查了比例的基本性质,比较简单,关键是巧设未知数,可使计算简便.4、C【解析】

根据“a是方程2x2﹣4x﹣2019=0的一个解”得出,即,则答案可求.【详解】∵a是方程2x2﹣4x﹣2019=0的一个根,∴,∴,故选:C.【点睛】本题主要考查整体代入法和方程的根,掌握整体的思想和方程的根的概念是解题的关键.5、A【解析】

根据程序得到函数关系式,即可判断图像.【详解】解:根据程序框图可得y=﹣x×2+3=﹣2x+3,y=2x+3的图象与y轴的交点为(0,3),与x轴的交点为(1.5,0).故选:A.【点睛】此题主要考查一次函数的图像,解题的关键是根据程序得到函数解析式.6、C【解析】

过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.【详解】过点C作CM⊥AB,垂足为M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是线段AC的垂直平分线,∴AD=DC,∵∠A=60°,∴△ADC等边三角形,∴CD=AD=AC=4,∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案选C.【点睛】本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.7、D【解析】

根据直角三角形的性质及勾股定理即可解答.【详解】如图所示,Rt△ABC中,AB=2,故故此三角形的周长是+3.故选:D.【点睛】考查勾股定理,含30度角的直角三角形,熟练掌握含30度角的直角三角形的性质是解题的关键.8、A【解析】

先求出点A坐标,再结合图象观察出直线直线在直线下方的自变量x的取值范围即可.【详解】把A(a,-2)代入y2=2x,得-2=2a,解得:a=-1,所以点A(-1,-2),观察图象可知当x>-1时,,故选A.【点睛】本题考查了一次函数与一元一次不等式,观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.注意数形结合思想的运用.9、A【解析】

分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故A选项错误;B、因为一次函数y=-2x+4中k=-2<0,因此函数值随x的增大而减小,故C选项正确;C、因为一次函数y=-2x+4中k=-2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故C选项正确;D、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故D选项正确.故选A.【点睛】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.10、C【解析】

根据不等式的性质,可得答案.【详解】、两边都减,不等号的方向不变,正确,不符合选项;、因为,所以,正确,不符合选项;、因为,所以,错误,符合选项;、因为,所以(),正确,不符合选项.故选:.【点睛】本题考查了不等式的性质的应用,不等式的两边都加上或减去同一个数,不等号的方向不变;不等式的两边都乘以或除以同一个负数,不等号的方向要改变.二、填空题(每小题3分,共24分)11、1【解析】

根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.【详解】解:这个调查的样本是1名考生的数学成绩,故样本容量是1.故答案为1.【点睛】本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.12、-1【解析】

由可得答案.【详解】由题意,得:故答案为:﹣1.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的加减混合运算顺序和运算法则.13、1【解析】

分式方程去分母转化为整式方程,把x=2代入计算即可求出k的值.【详解】去分母得:x+2=k+x2-1,把x=2代入得:k=1,故答案为:1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14、32【解析】

根据等腰三角形的性质以及平行线的性质得出AB∥AB∥AB,以及AB=2BA,得出AB=4BA=4,AB=8BA=8,AB=16BA…进而得出答案.【详解】∵△ABA是等边三角形,∴AB=AB,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA=AB=1,∴AB=1,∵△ABA、△BA是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴AB∥AB∥AB,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴AB=2BA,AB=4BA,∴AB=4BA=4,AB=8BA=8,AB=16BA=16,以此类推:AB=32BA=32.故答案为:32【点睛】此题考查等边三角形的性质,含30度角的直角三角形,解题关键在于根据等腰三角形的性质以及平行线的性质得出AB∥AB∥AB15、x=2、-4【解析】

先根据新定义得到,再移项得,然后利用直接开平方法求解.【详解】(x+1)﹡3=0,,,,所以、.故答案为:、.【点睛】本题考查了解一元二次方程-直接开平方法:如果方程化成的形式,那么可得,如果方程能化成()的形式,那么.16、1【解析】

利用同底数幂相乘,底数不变指数相加计算,再根据指数相同列式求解即可.【详解】解:a4•ay=a4+y=a19,∴4+y=19,解得y=1故答案为:1.【点睛】本题主要考查同底数幂相乘,底数不变指数相加的性质,熟练掌握性质是解题的关键.17、±1【解析】

根据完全平方式的一般式,计算一次项系数即可.【详解】解:∵b为常数,且x2﹣bx+1是完全平方式,∴b=±1,故答案为±1.【点睛】本题主要考查完全平方公式的系数关系,关键在于一次项系数的计算.18、y=-2x…(答案不唯一)【解析】解:答案不唯一,只要k<0即可.如:y=-2x….故答案为y=-2x…(答案不唯一).三、解答题(共66分)19、(1)BC=15;(2)S△BCD=2.【解析】

(1)根据勾股定理可求得BC的长.

(2)根据勾股定理的逆定理可得到△BCD也是直角三角形,根据三角形的面积即可得到结论.【详解】(1)∵∠A=90°,AB=9,AC=12∴BC==15,(2)∵BC=15,BD=8,CD=1∴BC2+BD2=CD2∴△BCD是直角三角形∴S△BCD=×15×8=2.【点睛】本题考查了勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理,通过作辅助线证明三角形是直角三角形是解决问题的关键.20、(1),(2),(3)存在,或【解析】

(1)求出B,C两点坐标,利用中点坐标公式计算即可.(2)如图1中,作点B关于直线m的对称点,连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.求出直线CB′的解析式可得点P坐标,作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小.(3)如图2中,由题意易知,,.分两种情形:①当时,设.②当时,分别构建方程即可解决问题.【详解】解:(1)∵直线与轴分别交于C、B两点,∴B(0,6),C(-8,0),∵CD=DB,∴D(-4,3).(2)如图1中,作点B关于直线m的对称点B′(-4,6),连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.∵C(-8,0),B′(-4,6),∴直线CB′的解析式为,∴P(-2,9),作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小.由题意点P向左平移4个单位,向下平移3个单位得到T,∴T(-6,6),∴PD′+D′C′+C′E=TC′+PT+C′E=PT+TE=5+6=1.∴PD′+D′C′+C′E的最小值为1.(3)如图2中,延长交BK′于J,设BK′交OC于R.∵B′S′=BS=4,S′K′=SK=,BK′平分∠CBO,所以,所以OR=3,tan∠OBR=,∵∠S′JK′=∠OBR=∠RBC,∴tan∠S′JK′==,∴,∵,∴,所以为的中点,,∴,由旋转的性质可知:,.①当时,设,,解得,所以.②当时,同理则有,整理得:,解得,所以,又因为,,所以直线为,此时在直线上,此时三角形不存在,故舍去.综上所述,满足条件的点N的坐标为或.【点睛】本题属于一次函数综合题,考查了一次函数的性质,轴对称最短问题,垂线段最短,等腰三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题.21、(1)y=-0.5x+1,y=;(1)-1<x<0或x>4.【解析】

(1)先把C点坐标代入反比例函数求出m,再根据D坐标的横坐标为-1求出D点坐标,再把C,D坐标代入一次函数求出k,b的值;(1)根据C,D两点的横坐标,结合图像即可求解.【详解】(1)把C(4,-1)代入反比例函数,得m=4×(-1)=-4,∴y=;设D(-1,y),代入y=得y=-1,∴D(-1,1)把C(4,-1),D(-1,1)代入一次函数得解得k=-0.5,b=1∴y=-0.5x+1(1)∵C,D两点的横坐标分别为4,-1,由图像可知当-1<x<0或x>4,一次函数的值小于反比例函数的值.【点睛】此题主要考查反比例函数与一次函数,解题的关键是熟知待定系数法确定函数关系式.22、(1)500(2)见解析(3)300人【解析】

(1)根据“个人自学后老师点拨”与所占的百分比进行计算即可得解.(2)求出“教师传授”的人数:(人)补全条形统计图;求出“教师传授”所占百分比:和“小组合作学习”所占百分比:补全扇形统计图.(3)用样本估计总体.【详解】解:(1)根据“个人自学后老师点拨”300人.占60%,得(人).(2)补全统计图如下:(3)∵(人),∴根据抽样调查的结果,估计该校1000名学生中大约有300人选择“小组合作学习”.考点:1.条形统计图;2.扇形统计图;3.用样本估计总体.23、(1)y=4x+10040(0≤x≤200);(2)从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.(3)从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.【解析】

(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和(60+x)吨,然后根据总运费和运输量的关系列出方程式,就可以求出解析式;(2)将y=10200代入(1)中的函数关系式可求得x的值;(3)根据(1)的解析式,由一次函数的性质就可以求出结论.【详解】(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和[260-(200-x)]=(60+x)吨.由总运费与各运输量的关系可知,反映y与x之间的函数关系为y=20x+25(200-x)+15(240-x)+24(60+x)化简,得y=4x+10040(0≤x≤200)(2)将y=10200代入得:4x+10040=10200,解得:x=40,∴200-x=200-40=160,240-x=200,60+x=100,∴从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.(3)∵y=4x+10040,∴k=4>0,∴y随x的增大而增大,∴当x=0时,y最小=10040∴从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.【点睛】本题考查了一次函数的解析式的运用,一次函数的性质的运用.解答时求出一次函数的解析式是关键.24、(1)BE=DF(或相等);(2)成立.证明见解析.【解析】

(1)根据正方形的性质和等边三角形性质得:AB=AD,∠BAD=90°,AF=AB,AE=AD,∠BAF=∠DAE=60°,再根据全等三角形判定和性质即可.(2)先利用平行四边形性质和等边三角形性质,再运用全等三角形判定和性质即可.【详解】解:(1)BE=DF(或相等)如图1,∵四边形ABCD为正方形∴AB=AD,∠BAD=90°∵△ABF、△ADE都是等边三角形∴AF=AB,AE=AD,∠BAF=∠DAE=60°∴∠BAE=∠BAD+∠DAE=150°,∠DAF=∠BAD+∠BAF=150°∴∠BAE=∠DAF∵AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论