版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省石家庄市裕华区2024届八年级下册数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.函数y=mx+n与y=nx的大致图象是()A. B.C. D.2.平行四边形所具有的性质是()A.对角线相等 B.邻边互相垂直C.两组对边分别相等 D.每条对角线平分一组对角3.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有()A.2种 B.4种 C.6种 D.无数种4.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(度)电费价格(元/度)0.480.530.78七月份是用电高峰期,李叔计划七月份电费支出不超过200元,则李叔家七月份最多可用电的度数是().A.100 B.400 C.396 D.3975.计算:()A.5 B.7 C.-5 D.-76.如图,矩形的顶点在轴正半轴上、顶点在轴正半轴上,反比例函数的图象分别与、交于点、,连接、、,若,则的值为()A.2 B.4 C.6 D.87.若分式方程=2+的解为正数,则a的取值范围是()A.a>4 B.a<4 C.a<4且a≠2 D.a<2且a≠08.如图所示,“数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是”,这种说明问题的方式体现的数学思想方法叫做()A.代入法 B.换元法 C.数形结合 D.分类讨论9.下列图形中,是轴对称图形的有()①正方形;②菱形;③矩形;④平行四边形;⑤等腰三角形;⑥直角三角形A.6个 B.5个 C.4个 D.3个10.若一个正多边形的每一个外角都等于40°,则它是().A.正九边形 B.正十边形 C.正十一边形 D.正十二边形11.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是()A.22.5° B.25° C.23° D.20°12.下列运算结果正确的是()A.=﹣9 B.=2 C. D.二、填空题(每题4分,共24分)13.计算:(2+)(2-)=_______.14.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩________分.15.如图所示四个二次函数的图象中,分别对应的是①y=ax1;②y=bx1;③y=cx1;④y=dx1.则a、b、c、d的大小关系为_____.16.某人参加一次应聘,计算机、英语、操作成绩(单位:分)分别为80、90、82,若三项成绩分别按3:5:2,则她最后得分的平均分为_____.17.已知四边形ABCD为菱形,其边长为6,,点P在菱形的边AD、CD及对角线AC上运动,当时,则DP的长为________.18.如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,__.三、解答题(共78分)19.(8分)解方程:(1)(2)2x2﹣4x+1=020.(8分)为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲70乙1甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?21.(8分)如图,四边形ABCD是菱形,BE⊥AD,BF⊥CD,垂足分别为点E,F.1求证:BE=BF;2当菱形ABCD的对角线AC=8,BD=6时,求BE的长.22.(10分)如图,在平面直角坐标系中,直线与坐标轴交于,过线段的中点作的垂线,交轴于点.(1)填空:线段,,的数量关系是______________________;(2)求直线的解析式.23.(10分)国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作如下统计图(不完整).其中分组情况:A组:时间小于0.5小时;B组:时间大于等于0.5小时且小于1小时;C组:时间大于等于1小时且小于1.5小时;D组:时间大于等于1.5小时.根据以上信息,回答下列问题:(1)A组的人数是人,并补全条形统计图;(2)本次调查数据的中位数落在组;(3)根据统计数据估计该地区25000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有多少人.24.(10分)某校初二年级以班为单位进行篮球比赛,第一轮比赛是先把全年级平分成、两个大组,同一个大组的每两个班都进行一场比赛,这样第一轮、两个大组共进行了20场比赛,问该校初二年级共有几个班?25.(12分)解下列不等式(组),并将其解集分别表示在数轴上.(1);(2)26.某校要设计一座高的雕像(如图),使雕像的点(肚脐)为线段(全身)的黄金分割点,上部(肚脐以上)与下部(肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到)米.(,结果精确到).
参考答案一、选择题(每题4分,共48分)1、D【解析】
当m>0,n>0时,y=mx+n经过一、二、三象限,y=nx经过一、三象限;当m>0,n<0时,y=mx+n经过一、三、四象限,y=nx经过二、四象限;当m<0,n>0时,y=mx+n经过一、二、四象限,y=nx经过一、三象限;当m<0,n<0时,y=mx+n经过二、三、四象限,y=nx经过二、四象限.综上,A,B,C错误,D正确故选D.考点:一次函数的图象2、C【解析】
根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,即可得出答案.【详解】解:平行四边形的对角相等,对角线互相平分,两组对边平行且相等.故选:C.【点睛】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.3、D【解析】
平行四边形的两条对角线交于一点,这个点是平行四边形的对称中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.【详解】∵平行四边形是中心对称图形,任意一条过平行四边形对角线交点的直线都平分平行四边形的面积,∴这样的折纸方法共有无数种.故选D.【点睛】本题主要考查平行四边形的性质,掌握平行四边形是中心对称图形,是解题的关键.4、C【解析】
先判断出电费是否超过400度,然后根据不等关系:七月份电费支出不超过200元,列不等式计算即可.【详解】解:0.48×200+0.53×200
=96+106
=202(元),
故七月份电费支出不超过200元时电费不超过400度,
依题意有0.48×200+0.53(x-200)≤200,
解得x≤1.
答:李叔家七月份最多可用电的度数是1.
故选:C.【点睛】本题考查了列一元一次不等式解实际问题的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等关系.5、A【解析】
先利用二次根式的性质进行化简,然后再进行减法运算即可.【详解】=6-1=5,故选A.【点睛】本题考查了二次根式的化简,熟练掌握是解题的关键.6、D【解析】
根据点的坐标特征得到,根据矩形面积公式、三角形的面积公式列式求出的关系,根据反比例函数图象上点的坐标特征得到,解方程得到答案.【详解】解:∵点,∴,则,由题意得,,整理得,,∵点在反比例函数上,∴,解得,,则,故选:D.【点睛】本题考查的是反比例函数比例系数k的几何意义、反比例函数图象上点的坐标特征、矩形的性质、三角形的面积公式,掌握反比例函数比例系数k的几何意义是解题的关键.7、C【解析】试题分析:去分母得:x=1x﹣4+a,解得:x=4﹣a,根据题意得:4﹣a>0,且4﹣a≠1,解得:a<4且a≠1.故选C.考点:分式方程的解.8、C【解析】
本题利用实数与数轴上的点对应关系结合数学思想即可求解答.【详解】解:如图在数轴上表示点P,这是利用直观的图形--数轴表示抽象的无理数,∴说明问题的方式体现的数学思想方法叫做数形结合,∴A,B,D的说法显然不正确.故选:C.【点睛】本题考查的是数学思想方法,做这类题可用逐个排除法,显然A,B,D所说方法不对.9、C【解析】
根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:①正方形,是轴对称图形;②菱形,是轴对称图形;③矩形,是轴对称图形;④平行四边形,不是轴对称图形;⑤等腰三角形,是轴对称图形;⑥直角三角形,不一定,是轴对称图形,故轴对称图形共4个.故选:C.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.10、A【解析】
根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【详解】解:∵360÷40=1,
∴这个正多边形的边数是1.
故选:A.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.11、A【解析】
根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.【详解】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.考点:正方形的性质.12、B【解析】
解:因为=9,所以A错误,因为,所以B正确,因为,所以C错误,因为,所以D错误,故选B.二、填空题(每题4分,共24分)13、1【解析】
根据实数的运算法则,利用平方差公式计算即可得答案.【详解】(2+)(2-)=22-()2=4-3=1.故答案为:1【点睛】本题考查实数的运算,熟练掌握运算法则并灵活运用平方差公式是解题关键.14、1【解析】
根据题意得:85×+80×+90×=17+24+45=1(分),答:小王的成绩是1分.故答案为1.15、a>b>d>c【解析】
设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小.【详解】因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),
所以,a>b>d>c.【点睛】本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小.16、85.4分【解析】
根据加权平均数的概念,注意相对应的权比即可求解.【详解】8030%+9050%+8220%=85.4【点睛】本题考查了加权平均数的求法,属于简单题,熟悉加权平均数的概念是解题关键.17、2或或【解析】
分以下三种情况求解:(1)点P在CD上,如图①,根据菱形的边长以及CP1=2DP1可得出结果;(2)点P在对角线AC上,如图②,在三角形CDP2中,可得出∠P2DC=90°,进而可得出DP2的长;(3)当点P在边AD上,如图③,过点D作于点F,过点作于点E,设,则,再用含x的代数式表示出CE,EP3,CP3的长,根据勾股定理列方程求解即可.【详解】解:(1)当点P在CD上时,如解图①,,,;(2)当点P在对角线AC上时,如解图②,,.当时,,;图①图②(3)当点P在边AD上时,如解图③,过点D作于点F,过点作于点E,设,则,,,,,,,.,在中,由勾股定理得,解得,(舍).综上所述,DP的长为2或或.故答案为:2或或.【点睛】本题主要考查菱形的性质,含30°直角三角形的性质以及勾股定理,在解答无图题时注意分类讨论,避免漏解.
错因分析较难题.出错原因:①不能全面考虑所有情况,即根据动点在每一条边上进行分类讨论求解;②在第三种情况下不能将已知条件有效利用,转化到一个三角形中通过勾股定理列方程求解.
18、或1【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示,连结AC,在Rt△ABC中,AB=1,BC=12,∴AC==13,∵将ΔABE沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即将ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,设:,则,,,由勾股定理得:,解得:;②当点B′落在AD边上时,如图2所示,此时ABEB′为正方形,∴BE=AB=1,综上所述,BE的长为或1,故答案为:或1.【点睛】本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.三、解答题(共78分)19、(1)无解;(2)x1=,x2=.【解析】
(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)移项,系数化成1,配方,开方,即可的两个方程,求出方程的解即可.【详解】解:(1)方程两边都乘以x(x﹣4)得:3x﹣4+x(x﹣4)=x(x﹣2),解得:x=4,检验:当x=4时,x(x﹣4)=0,所以x=4不是原方程的解,即原方程无解;(2)2x2﹣4x+1=0,2x2﹣4x=﹣1,x2﹣2x=﹣,x2﹣2x+1=﹣+1,(x﹣1)2=,x﹣1=,x1=,x2=.【点睛】本题考查了解分式方程和解一元二次方程,能把分式方程转化成整式方程是解(1)的关键,并且要注意检验;能正确配方是解(2)的关键.20、(1)补图见解析;(2)甲胜出,理由见解析;(3)见解析.【解析】
(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;
(2)计算出甲乙两人的方差,比较大小即可做出判断;
(3)希望乙胜出,修改规则,使乙获胜的概率大于甲即可.【详解】(1)根据折线统计图得乙的射击成绩为2,4,6,8,1,1,8,9,9,10,则平均数为(环),中位数为1.2环,方差为.由图和表可得甲的射击成绩为9,6,1,6,2,1,1,8,9,平均数为1环.则甲第8次成绩为(环).所以甲的10次成绩为2,6,6,1,1,1,8,9,9,9,中位数为1环,方差为.补全表格如下:甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲140乙12.41甲、乙射击成绩折线统计图(2)甲应胜出因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出.(3)制定的规则不唯一,如:如果希望乙胜出,应该制定的评判规则为平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲、乙的平均成绩相同,乙只有第2次射击比第4次射击少命中1环,且命中1次10环,而甲第2次比第1次第4次比第3次、第2次比第4次、第9次比第8次命中环数都低,且命中10环的次数为0,即随着比赛的进行,乙的射击成绩越来越好,故乙胜出.【点睛】本题考查折线统计图,中位数,方差,平均数,以及统计表,读懂统计图,熟练掌握中位数,方差,平均数的计算是解本题的关键.21、(1)见解析;(2)BE=【解析】
(1)根据菱形的邻边相等,对角相等,证明△ABE与△CBF全等,再根据全等三角形对应边相等即可证明;(2)先根据菱形的对角线互相垂直平分,求出菱形的边长,再根据菱形的面积等于对角线乘积的一半和底边乘以高两种求法即可求出.【详解】(1)证明:∵四边形ABCD是菱形,∴∠BAE=∠BCF,BA=BC又∵BE⊥AD,BF⊥CD∴∠AEB=∠CFB∴△ABE≌△CBF(AAS)∴BE(2)解:∵四边形ABCD是菱形,∴OA=12AC=4,∴AD=AB=OA∵S∴5BE=1∴BE=故答案为:(1)见解析;(2)245【点睛】本题考查了全等三角形的性质和判定,菱形的性质和面积,注意:菱形的四条边都相等,菱形的对角相等.22、(1);(2)【解析】
(1)连接BC,根据线段垂直平分线性质得出BC=AC,然后根据勾股定理可得,进而得出;(2)根据一次函数解析式求出点A坐标,从而得出OA=6.设OC=x,在Rt△BOC中利用勾股定理建立方程求出OC的长,进而得出CA长度,然后利用三角形面积性质求出点M到x轴的距离,从而进一步得出M的坐标,之后根据M、C两点坐标求解析式即可.【详解】(1)如图所示,连接BC,∵MC⊥AB,且M为AB中点,∴BC=AC,∵△BOC为直角三角形,∴,∴;(2)∵直线与坐标轴交于两点,∴OA=6,OB=4,设OC=x,则BC=,∴,解得,∴△BCA面积==,设M点到x轴距离为n,则:,∴n=.∴M坐标为(3,2),∵C坐标为(,0)设CM解析式为:,则:,,∴,,∴CM解析式为:.【点睛】本题主要考查了一次函数与勾股定理的综合运用,熟练掌握相关概念是解题关键.23、(1)50,补图见解析;(2)C;(3)14000人.【解析】试题分析:(1)根据题意和统计图可以得到A组的人数;
(2)根据(1)中补全的统计图可以得到这组数据的中位数落在哪一组;
(3)根据统计图中的数据可以估计该地区达到国家规定的每天在校体育锻炼时间的人数.试题解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版学校门卫服务及校园安全防范协议2篇
- 2025年度新型城镇化项目卖方信贷贷款合同
- 二零二五版毛竹砍伐与生态旅游项目投资合作协议2篇
- 2025年度数据中心外接线用电环保责任合同
- 二零二五年度GRC构件定制化设计与施工服务合同3篇
- 二零二五年度公司自愿离婚协议书编制指南
- 个人借款抵押车全面合同(2024版)2篇
- 2025年度录音棚音响设备采购保密协议3篇
- 2025年度私人二手房购房定金合同及物业费用说明
- 占地修路项目2025年度合同6篇
- 2025年春新沪科版物理八年级下册全册教学课件
- 2025届高考语文复习:散文的结构与行文思路 课件
- 电网调度基本知识课件
- 拉萨市2025届高三第一次联考(一模)语文试卷(含答案解析)
- 《保密法》培训课件
- 回收二手机免责协议书模板
- (正式版)JC∕T 60023-2024 石膏条板应用技术规程
- (权变)领导行为理论
- 2024届上海市浦东新区高三二模英语卷
- 2024年智慧工地相关知识考试试题及答案
- GB/T 8005.2-2011铝及铝合金术语第2部分:化学分析
评论
0/150
提交评论