版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省丽江市2024年数学八年级下册期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A.方差 B.平均数 C.中位数 D.众数2.一组数据1,2,的平均数为2,另一组数据-l,,1,2,b的唯一众数为-l,则数据-1,,,1,2的中位数为()A.-1 B.1 C.2 D.33.下列函数的图象经过(0,1),且y随x的增大而减小的是()A.y=一x B.y=x-1 C.y=2x+1 D.y=一x+14.下列各点中,在函数y=﹣2x的图象上的是()A.(12,1) B.(﹣12,1) C.(﹣12,﹣1)D(05.如图,DE是的中位线,则与四边形DBCE的面积之比是()A. B. C. D.6.如图,在平面直角坐标系中,已知,,顶点在第一象限,,在轴的正半轴上(在的右侧),,,与关于所在的直线对称.若点和点在同一个反比例函数的图象上,则的长是()A.2 B.3 C. D.7.一元二次方程x2﹣4x﹣6=0经过配方可变形为()A.(x﹣2)2=10 B.(x+2)2=10 C.(x﹣4)2=6 D.(x﹣2)2=28.若关于x的不等式组的整数解有3个,则a的取值范围是()A.3<a≤4 B.2<a≤3 C.2≤a<3 D.3≤a<49.若,则下列不等式正确的是A. B. C. D.10.在-2,-1,0,1这四个数中,最小的数是()A.-2 B.-1 C.0 D.111.如图,在中,平分,且,则的周长为()A. B. C. D.12.等边三角形的边长为2,则该三角形的面积为()A.4 B. C.2 D.3二、填空题(每题4分,共24分)13.如图所示的圆形工件,大圆的半径为,四个小圆的半径为,则图中阴影部分的面积是_____(结果保留).14.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH丄AE于点H,连接BH并延长交CD于点F,连接DE交BF①∠AED=∠CED;②OE=OD;③BH=HF;④BC-CF=2HE;⑤AB=HF,其中正确的有__________(只填序号).15.如图,把矩形ABCD沿EF翻转,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是16.若关于x的方程-3有增根,则a=_____.17.如图,函数()和()的图象相交于点,则不等式的解集为_________.18.如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.三、解答题(共78分)19.(8分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式
粗加工后销售
精加工后销售
每吨获利(元)
1000
2000
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?20.(8分)八年级下册教材第69页习题14:四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.这道题对大多数同学来说,印象深刻数学课代表在做完这题后,她把这题稍作改动,如图,四边形ABCD是正方形,点E是边BC的三等分点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,那么AE=EF还成立吗?如果成立,给予证明,如果不成立,请说明理由.21.(8分)列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?22.(10分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F(1)求证:AE=DF,(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.23.(10分)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠,点A的对应点为点G.(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是___________形;(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.求证:BF=AB+DF;若AD=AB,试探索线段DF与FC的数量关系.24.(10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,1.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.25.(12分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.(1)填表:(不需化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?26.已知一次函数.(1)当m取何值时,y随x的增大而减小?(2)当m取何值时,函数的图象过原点?
参考答案一、选择题(每题4分,共48分)1、D【解析】
解:由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数.故选.2、B【解析】试题解析:∵一组数据1,2,a的平均数为2,
∴1+2+a=3×2
解得a=3
∴数据-1,a,1,2,b的唯一众数为-1,
∴b=-1,
∴数据-1,3,1,2,b的中位数为1.
故选B.点睛:中位数就是讲数据按照大小顺序排列起来,形成一个数列,数列中间位置的那个数.3、D【解析】
设该函数解析式为(k≠1),由该函数的图象经过(1,1)可得出b=1,由y随x的增大而减小可得出k<1,再对照四个选项即可得出结论.【详解】解:设该函数解析式为(k≠1).
∵该函数的图象经过(1,1),
∴b=1;
∵y随x的增大而减小,
∴k<1.
故选D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出k<1及b=1是解题的关键.4、B【解析】
把四个选项中的点分别代入解析式y=-2x,通过等式左右两边是否相等来判断点是否在函数图象上.【详解】A、把(12,1)代入函数y=-2x得:左边=1,右边=-1,左边≠右边,所以点(12,1)不在函数B、把(-12,1)代入函数y=-2x得:左边=1,右边=1,左边=右边,所以点(-12,1)在函数C、把(-12,-1)代入函数y=-2x得:左边=-1,右边=1,左边≠右边,所以点(-12,-1)不在函数D、把(0,-1)代入函数y=-2x得:左边=-1,右边=0,左边≠右边,所以点(0,-1)不在函数y=-2x的图象上,故本选项不符合题意;故选B.【点睛】本题考查了一次函数图象上点的坐标特征.用到的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.5、B【解析】
首先根据DE是△ABC的中位线,可得△ADE∽△ABC,且DE:BC=1:2;然后根据相似三角形面积的比等于相似比的平方,求出△ADE与△ABC的面积之比是多少,进而求出△ADE与四边形DBCE的面积之比是多少即可.【详解】解:∵DE是△ABC的中位线,
∴△ADE∽△ABC,且DE:BC=1:2,
∴△ADE与△ABC的面积之比是1:4,
∴△ADE与四边形DBCE的面积之比是1:1.
故选:B.【点睛】(1)此题主要考查了三角形的中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.
(2)此题还考查了相似三角形的面积的比的求法,要熟练掌握,解答此题的关键是要明确:相似三角形面积的比等于相似比的平方.6、B【解析】
作DE⊥y轴于E,根据三角函数值求得∠ACD=∠ACB=60°,即可求得∠DCE=60°,根据轴对称的性质得出CD=BC=2,从而求得CE=1,DE=,设A(m,2),则D(m+3,),根据系数k的几何意义得出k=2m=(m+3),求得m=3,即可得到结论.【详解】解:作轴于,∵中,,,,∴,∴,∴,∵,∴,,设,则,∵,解得,∴,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,勾股定理等知识,求得∠DCE=60°是解题的关键.7、A【解析】
先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方的形式即可.【详解】x2﹣4x=6,x2﹣4x+4=1,(x﹣2)2=1.故选:A.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.8、B【解析】解第一个不等式可得x<a+1,因关于x的不等式组有解,即1≤x<a+1,又因不等式组的整数解有3个,可得3<a+1≤4,即可得2<a≤3,故选B.点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9、C【解析】
根据不等式的基本性质,逐个分析即可.【详解】若,则,,,.故选C【点睛】本题考核知识点:不等式的性质.解题关键点:熟记不等式的基本性质.10、A【解析】
根据正数大于0,负数小于0,负数绝对值越大值越小即可求解.【详解】解:在、、、这四个数中,大小顺序为:,所以最小的数是.故选A.【点睛】此题考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题.11、D【解析】
根据角平分线的定义可得∠BAE=∠DAE,再根据平行四边形的对边平行,可得AD∥BC,然后利用两直线平行,内错角相等可得∠AEB=∠DAE,根据等角对等边可得AB=BE,然后根据平行四边形的周长公式列式计算即可得解.【详解】解:∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵在▱ABCD中,AD∥BC,
∴∠AEB=∠DAE,
∴AB=BE=2,
∵BE=CE=2,
∴BC=4,
∴▱ABCD的周长=2(AB+BC)=2×(2+4)=1.
故选:D.【点睛】本题考查平行四边形的性质,平行线的性质,熟记各性质并判断出AB=BE是解题的关键.12、B【解析】∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC⋅AD=×2×=,故选B.二、填空题(每题4分,共24分)13、3080π.【解析】
用大圆的面积减去4个小圆的面积即可得到剩余部分的面积,然后把R和r的值代入计算出对应的代数式的值.【详解】依题意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).答:剩余部分面积为3080πmm1.故答案为:3080π.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.14、①②③④【解析】
①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=2AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【详解】∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=2AB,∵AD=2AB,∴AE=AD,在△ABE和△AHD中,∵∠BAE=∠DAE,∠ABE=∠AHD=90°,AE=AD,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°-45°)=67.5°∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=12(180°-45°)=67.5°,∠OHE=∠AHB∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,∵∠EBH=∠OHD=22.5°,BE=DH,∠AEB=∠HDF=45°,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④.故答案为:①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.15、163【解析】试题分析:【分析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°="60°."∴∠ABE=30°.∴在Rt△ABE中,AB=23.∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD的面积=AB•AD=23×8=163.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质;3.平行的性质;4.含30度直角三角形的性质.16、1【解析】
去分母后把x=2代入,即可求出a的值.【详解】两边都乘以x-2,得a=x-1,∵方程有增根,∴x-2=0,∴x=2,∴a=2-1=1.故答案为:1.【点睛】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.17、【解析】
写出直线在直线下方部分的的取值范围即可.【详解】解:由图可知,不等式的解集为;故答案为:.【点睛】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.18、1.【解析】
由已知角相等,加上公共角,得到三角形ABD与三角形ACB相似,由相似得比例,将AB与AD长代入即可求出CD的长.【详解】在△ABD和△ACB中,∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∵AB=6,AD=4,∴,则CD=AC﹣AD=9﹣4=1.【点睛】考点:相似三角形的判定与性质.三、解答题(共78分)19、(1)应安排4天进行精加工,8天进行粗加工(2)①=②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元【解析】
解:(1)设应安排天进行精加工,天进行粗加工,根据题意得解得答:应安排4天进行精加工,8天进行粗加工.(2)①精加工吨,则粗加工()吨,根据题意得=②要求在不超过10天的时间内将所有蔬菜加工完,解得又在一次函数中,,随的增大而增大,当时,精加工天数为=1,粗加工天数为安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.20、成立,理由见解析.【解析】
取AB的三等分点,连接GE,由点E是边BC的三等分点,得到BE=BG,根据正方形的性质得到AG=EC,根据全等三角形的性质即可得到结论.【详解】证明:取AB的三等分点,连接GE,∵点E是边BC的三等分点,∴BE=BG,∵四边形ABCD是正方形,∴AG=EC,∵△EBG为等腰直角三角形,可知∠AGE=135°,∵∠AEF=90°,∠BEA+∠FEC=90°,∠BEA+∠BAE=90°,∴∠BAE=∠FEC.∴△AGE≌△ECF(ASA),∴AE=EF.【点睛】此题考查正方形的性质,三角形全等的判定与性质,角平分线的性质等知识点,注意结合图形,灵活作出辅助线解决问题.21、原计划每天加工20套.【解析】
设原计划每天加工x套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x套,由题意得:解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用22、(1)详见解析;(2)平行四边形AEDF为菱形;理由详见解析【解析】试题分析:(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.试题解析:(1)∵DE∥AC,∠ADE=∠DAF,同理∠DAE=∠FDA,∵AD=DA,∴△ADE≌△DAF,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.考点:1.全等三角形的判定与性质;2.菱形的判定.23、正方形【解析】分析:(1)如图1,当点G恰好在BC边上时,四边形ABGE的形状是正方形,理由为:由折叠得到两对边相等,三个角为直角,确定出四边形ABEG为矩形,再由矩形对边相等,等量代换得到四条边相等,即邻边相等,即可得证;(2)①如图2,连接EF,由ABCD为矩形,得到两组对边相等,四个角为直角,再由E为AD中点,得到AE=DE,由折叠的性质得到BG=AB,EG=AE=ED,且∠EGB=∠A=90°,利用HL得到直角三角形EFG与直角△EDF全等,利用全等三角形对应边相等得到DF=FG,由BF=BG+GF,等量代换即可得证;②CF=DF,理由为:不妨假设AB=DC=a,DF=b,表示出AD=BC,由①得:BF=AB+DF,进而表示出BF,CF,在直角△BCF中,利用勾股定理列出关系式,整理得到a=2b,由CD-DF=FC,代换即可得证.详解:(1)正方形;(2)①如图2,连结EF,在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°,∵E是AD的中点,∴AE=DE,∵△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年氯甲烷项目申请报告
- 白山学校水箱施工方案
- 健康的我主题班会
- 消防设备的安全管理培训
- 班组长课程设计
- 班级证书设计方案
- 班级生成性课程设计
- 2024年医院连锁项目申请报告
- 2024年医用超声治疗设备项目提案报告
- 玻镁风管施工方案
- 艾滋病反歧视培训
- 民政局离婚协议书范文模板标准版
- 2024年代工生产机密保护协议
- 2023-2024学年湖北省武汉市洪山区九年级(上)期末物理试卷(含答案)
- 2024年新人教版五年级数学下册《第4单元第7课时 最大公因数(1)》教学课件
- 小学生感恩节国旗下讲话稿(35篇)
- 一年级新生家长会课件(共25张课件)
- 品牌经理招聘面试题与参考回答(某大型集团公司)2024年
- 五年级上册道德与法治说课稿-3 主动拒绝烟酒与毒品 部编版
- 语文统编版(2024)一年级上册阅读7.两件宝 教案
- 术后谵妄的预防及护理
评论
0/150
提交评论