版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西南宁市第47中学2024年数学八年级下册期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是(横坐标表示小刚出发所用时间,纵坐标表示小刚离出发地的距离)()A. B.C. D.2.下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2 C.72cm2 D.108cm23.在下列交通标志中,是中心对称图形的是()A. B.C. D.4.下列特征中,平行四边形不一定具有的是()A.邻角互补 B.对角互补 C.对角相等 D.内角和为360°5.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形6.已知32m=8n,则m、n满足的关系正确的是()A.4m=n B.5m=3n C.3m=5n D.m=4n7.二次根式3+x中,x的取值范围在数轴上表示正确的是()A. B.C. D.8.下列图形中,是中心对称但不是轴对称图形的有()A.1个 B.2个 C.3个 D.4个9.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁10.如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长()A. B.1 C. D.611.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定12.如图,在四边形中,,且,,给出以下判断:①四边形是菱形;②四边形的面积;③顺次连接四边形的四边中点得到的四边形是正方形;④将沿直线对折,点落在点处,连接并延长交于点,当时,点到直线的距离为;其中真确的是()A.①③ B.①④ C.②③ D.②④二、填空题(每题4分,共24分)13.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.14.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是________.15.李华在淘宝网上开了一家羽毛球拍专卖店,平均每大可销售个,每个盈利元,若每个降价元,则每天可多销售个.如果每天要盈利元,每个应降价______元(要求每个降价幅度不超过元)16.如图,在R△ABC中,∠ABC=90°,AB=22,BC=1,BD是AC边上的中线,则BD=________。17.用配方法解方程时,将方程化为的形式,则m=____,n=____.18.的整数部分是a,小数部分是b,则________.三、解答题(共78分)19.(8分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)证明:△ACB≌△EFB;(2)求证:四边形ADFE是平行四边形.20.(8分)分解因式:(1)4m2-9n2(2)x2y-2xy2+y321.(8分)八年级班一次数学测验,老师进行统计分析时,各分数段的人数如图所示(分数为整数,满分分).请观察图形,回答下列问题:(1)该班有____名学生:(2)请估算这次测验的平均成绩.22.(10分)已知(如图),点分别在边上,且四边形是菱形(1)请使用直尺与圆规,分别确定点的具体位置(不写作法,保留画图痕迹);(2)如果,点在边上,且满足,求四边形的面积;(3)当时,求的值。23.(10分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)品种星期一二三四五六日甲乙(1)分别求出本周内甲、乙两种水果每天销售量的平均数;(2)哪种水果销售量比较稳定?24.(10分)计算:(-)2×()-2+(-2019)025.(12分)已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)(1)求△ABC的面积是____;(2)求直线AB的表达式;(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.26.某商场销售A,B两款书包,己知A,B两款书包的进货价格分别为每个30元、50元,商场用3600元的资金购进A,B两款书包共100个.(1)求A,B两款书包分别购进多少个?(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?
参考答案一、选择题(每题4分,共48分)1、C【解析】
由题意结合函数图象的性质与实际意义,进行分析和判断.【详解】解:∵小刚在原地休息了6分钟,∴排除A,又∵小刚再休息后以500米/分的速度骑回出发地,可知小刚离出发地的距离越来越近,∴排除B、D,只有C满足.故选:C.【点睛】本题考查一次函数图象所代表的实际意义,学会判断横坐标和纵坐标所表示的实际含义以及运用数形结合思维分析是解题的关键.2、D【解析】
根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.【详解】根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F的面积之和为3个G的面积.∵M的面积是61=36cm1,∴A、B、C、D、E、F的面积之和为36×3=108cm1.故选D.【点睛】考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.3、C【解析】
解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C4、B【解析】
根据平行四边形的性质得到,平行四边形邻角互补,对角相等,内角和360°,而对角却不一定互补.【详解】解:根据平行四边形性质可知:A、C、D均是平行四边形的性质,只有B不是.故选B.【点睛】本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.5、D【解析】
直接利用特殊平行四边形的判定逐一进行判断即可【详解】有一组邻边相等的平行四边形是菱形,故A正确对角线互相垂直的平行四边形是菱形,故B正确有一个角是直角的平行四边形是矩形,故C正确对角线垂直且相等的平行四边形是正方形,故D错误本题选择不正确的,故选D【点睛】本题主要考查平行四边形性质、矩形的判定定理、正方形判定定理、菱形判定定理,基础知识扎实是解题关键6、B【解析】∵32m=8n,
∴(25)m=(23)n,
∴25m=23n,
∴5m=3n.
故选B.7、D【解析】
根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【详解】解:根据题意得3+x≥0,解得:x≥﹣3,故x的取值范围在数轴上表示正确的是.故选:D.【点睛】本题考查了二次根式的性质,二次根式中的被开方数必须是非负数,否则二次根式无意义.8、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:第1个图形,是轴对称图形,不是中心对称图形,故错误;第2个图形,不是轴对称图形,是中心对称图形,故正确;第3个图形,不是轴对称图形,是中心对称图形,故正确;第4个图形,是轴对称图形,也是中心对称图形,故错误;故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、A【解析】
∵甲的平均数和丙的平均数相等大于乙和丁的平均数,∴从甲和丙中选择一人参加比赛,又∵甲的方差与乙的方差相等,小于丙和丁的方差.∴选择甲参赛,故选A.考点:方差;算术平均数.10、C【解析】试题解析:∵D、E分别是AB、AC上点,DE//BC,∴∵AD=2,DB=1,AE=3,∴故选C.11、A【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
错因分析容易题.失分原因是方差的意义掌握不牢.
12、D【解析】
根据可判定①错误;根据AB=AD,BC=CD,可推出AC是线段BD的垂直平分线,可得②正确;现有条件不足以推出中点四边形是正方形,故③错误;连接AF,设点F到直线AB的距离为h,作出图形,求出h的值,可知④正确。可得正确选项。【详解】解:∵在四边形ABCD中,∴四边形不可能是菱形,故①错误;∵在四边形ABCD中,AB=AD=5,BC=CD,∴AC是线段BD的垂直平分线,∴四边形的面积,故②正确;由已知得顺次连接四边形的四边中点得到的四边形是矩形,不是正方形,故③错误;将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,
连接AF,设点F到直线AB的距离为h,
由折叠可得,四边形ABED是菱形,AB=BE=5=AD=DE,BO=DO=4,
∴AO=EO=3,∵BF⊥CD,BF∥AD,∵S△ABF=S梯形ABFD-S△ADF,解得,故④正确故选:D【点睛】本题主要考查了菱形的判定与性质,线段垂直平分线的性质以及勾股定理的综合运用,第④个稍复杂一些,解决问题的关键是作出正确的图形进行计算.二、填空题(每题4分,共24分)13、32a【解析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】如图所示:∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=a,
∴A2B1=a,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4a,
A4B4=8B1A2=8a,
A5B5=16B1A2=16a,
以此类推:A6B6=32B1A2=32a.
故答案是:32a.【点睛】考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14、14.【解析】试题分析:根据加权平均数计算公式可得.考点:加权平均数.15、1【解析】
首先设每个羽毛球拍降价x元,那么就多卖出5x个,根据每天要盈利1700元,可列方程求解.【详解】解:设每个羽毛球拍降价x元,由题意得:(40-x)(20+5x)=1700,即x2-31x+180=0,解之得:x=1或x=20,因为每个降价幅度不超过15元,所以x=1符合题意,故答案是:1.【点睛】本题考查了一元二次方程的应用,关键是看到降价和销售量的关系,然后根据利润可列方程求解.16、1.5【解析】
利用勾股定理求出AC的长,再根据直角三角形斜边上的中线等于斜边的一半,就可求出BD的长.【详解】解:在Rt△ABC中,AC=A∵BD是AC边上的中线,∴AC=2BD∴BD=3÷2=1.5故答案为:1.5【点睛】本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.17、m=1n=1【解析】
先把常数项移到方程右边,再把方程两边都加上1,然后把方程作边写成完全平方形式,从而得到m、n的值.【详解】解:x2-2x=5,
x2-2x+1=1,
(x-1)2=1,
所以m=1,n=1.
故答案为1,1.【点睛】本题考查解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.18、2【解析】
因为1<<2,由此得到的整数部分a,再进一步表示出其小数部分b.【详解】因为1<<2,所以a=1,b=−1.故(1+)(-1)=2,故答案为:2.【点睛】此题考查估算无理数的大小,解题关键在于得到的整数部分a.三、解答题(共78分)19、(1)见详解;(2)见详解.【解析】
(1)由△ABE是等边三角形可知:AB=BE,∠EBF=60°,于是可得到∠EFB=∠ACB=90°,∠EBF=∠ABC,接下来依据AAS证明△ABC≌△EBF即可;(2)由△ABC≌△EBF可得到EF=AC,由△ACD是的等边三角形进而可证明AC=AD=EF,然后再证明∠BAD=90°,可证明EF∥AD,故此可得到四边形EFDA为平行四边形.【详解】解:(1)证明:∵△ABE是等边三角形,EF⊥AB,∴∠EBF=60°,AE=BE,∠EFB=90°.又∵∠ACB=90°,∠ABC=60°,∴∠EFB=∠ACB,∠EBF=∠ABC.∵BE=BA,∴△ABC≌△EBF(AAS).(2)证明:∵△ABC≌△EBF,∴EF=AC.∵△ACD是的等边三角形,∴AC=AD=EF,∠CAD=60°,又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EFA=∠BAD=90°,∴EF∥AD.又∵EF=AD,∴四边形EFDA是平行四边形.【点睛】本题主要考查了平行四边形的判定、全等三角形的性质和判定、等边三角形的性质,解题的关键是掌握证明全等三角形的判定方法和证明平行四边形的判定方法.20、(1)(1m-3n)(1m+3n)(1)y(x-y)1.【解析】
(1)利用平方差公式进行因式分解.(1)先提取公因式,然后利用完全平方公式解答.【详解】解:(1)原式=(1m-3n)(1m+3n).(1)原式=y(x1-1xy+y1)=y(x-y)1.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.21、(1)60(2)61分【解析】
(1)把各分数段的人数相加即可.(2)用总分数除以总人数即可求出平均分.【详解】(1)(名)故该班有60名学生.(2)(分)故这次测验的平均成绩为61分.【点睛】本题考查了条形统计图的问题,掌握条形统计图的性质、平均数的算法是解题的关键.22、(1)详见解析;(2);(3)【解析】
(1)作△ABC的角平分线AE,作线段AE的垂直平分线交AB于D,交AC于F,连接DE、EF,四边形ADEF即为所求;(2)由题意,当∠A=60°,AD=4时,△ADF,△EFD,△EMD都是等边三角形,边长为4,由此即可解决问题;(3)利用三角形的中位线定理即可解决问题.【详解】(1)D,E,F的位置如图所示.(2)由题意,当∠A=60°,AD=4时,△ADF,△EFD,△EMD都是等边三角形,边长为4,∴S四边形AFEM=3××42=12;(3)当AB=AC时,易知DE是△ABC的中位线,∴DE=AC∴=.【点睛】本题考查菱形的判定和性质,复杂作图,等边三角形的性质,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23、(1),;(2)乙种水果销量比较稳定.【解析】
(1)根据平均数的公式计算即可.(2)根据方差公式计算,再根据方差的意义“方差越小越稳定”判断销售量哪家更稳定.【详解】(1),(2),,,所以乙种水果销量比较稳定.【点睛】本题考查了求平均数和方差,熟练掌握平均数和方差公式是解答本题的关键,24、2【解析】
分别计算乘方,负指数幂,零次幂,然后再按运算顺序进行计算即可.【详解】原式=×4+1=1+1=2.【点睛】考查了实数运算,解题关键是熟记其运算法则.25、(1)1;(2)y=﹣x+;(3)2<k≤1或﹣≤k<2;(1)(2,)或(2,).【解析】
(1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=1,∠C=92°,再利用三角形面积公式列式计算即可;(2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;(3)由于y=kx+2是一次函数,所以k≠2,分两种情况进行讨论:①当k>2时,求出y=kx+2过A(1,3)时的k值;②当k<2时,求出y=kx+2过B(5,1)时的k值,进而求解即可;(1)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P点坐标.【详解】解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),∴AC=3﹣1=2,BC=5﹣1=1,∠C=92°,∴S△ABC=AC•BC=×2×1=1.故答案为1;(2)设直线AB的表达式为y=kx+b.∵A点坐标是(1,3),B点坐标是(5,1),∴,解得,∴直线AB的表达式为y=﹣x+;(3)当k>2时,y=kx+2过A(1,3)时,3=k+2,解得k=1,∴一次函数y=kx+2与线段AB有公共点,则2<k≤1;当k<2时,y=kx+2过B(5,1),1=5k+2,解得k=﹣,∴一次函数y=kx+2与线段AB有公共点,则﹣≤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿英语教师年终总结
- 2024合同专用条款
- 化工技术创新与产业升级考核试卷
- 神经外科手术的创新技术
- Schisandrin-B-Standard-生命科学试剂-MCE
- 工程工程合同模板(31篇)
- 货物装卸运输合同书(3篇)
- 2023年宣州区招考城市社区专职工作者笔试真题
- 耳前瘘管的护理小讲课
- 2023年陕西陕化煤化工集团有限公司招聘考试真题
- 《乡土中国》之《名实的分离》-统编版高中语文必修上册
- 户外广告牌施工方案53621
- 反假货币-外币理论考试题库(含答案)
- 幼儿园、中小学、病愈复课证明
- 检验科生化项目临床意义培训课件
- APQP产品先期策划计划流程图
- 危险化学品MSDS氨水(12%)
- 上海音乐出版社三年级上册音乐教案全册
- Q∕SY 02625.1-2018 油气水井带压作业技术规范 第1部分:设计
- 外市电引入工程施工组织设计方案
- 纸包装公司简介
评论
0/150
提交评论