版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市河西区名校2024届数学八年级下册期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.函数的自变量的取值范围是()A. B. C. D.2.八(1)班名同学一天的生活费用统计如下表:生活费(元)学生人数(人)则这名同学一天的生活费用中,平均数是()A. B. C. D.3.已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60cm和38cm,则△ABC的腰长和底边BC的长分别是()A.22cm和16cm B.16cm和22cmC.20cm和16cm D.24cm和12cm4.多项式x2m﹣xm提取公因式xm后,另一个因式是()A.x2﹣1 B.xm﹣1 C.xm D.x2m﹣15.已知一次函数的图象经过点(0,3)和(-2,0),那么直线必经过点()A.(-4,-3) B.(4,6) C.(6,9) D.(-6,6)6.矩形是轴对称图形,对称轴可以是()A. B. C. D.7.下列多项式中,可以提取公因式的是()A.ab+cd B.mn+m2C.x2-y2 D.x2+2xy+y28.一次函数y=x﹣1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若分式x2x-1□xA.+ B.— C.—或÷ D.+或×10.某市五月份连续五天的日最高气温分别为33、30、31、31、29(单位:ºC),这组数据的众数是()A.29 B.30 C.31 D.33二、填空题(每小题3分,共24分)11.在平面内将一个图形绕某一定点旋转________度,图形的这种变化叫做中心对称;12.数据1,4,5,6,4,5,4的众数是___.13.若分式x-1x+1的值为零,则x的值为14.已知菱形ABCD的对角线AC=10,BD=24,则菱形ABCD的面积为__________。15.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.16.已知反比例函数y=的图像都过A(1,3)则m=______.17.如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2,则DE=___.18.如图,已知等腰直角△ABC中,∠BAC=90°,AD⊥BC于点D,AB=5,点E是边AB上的动点(不与A,B点重合),连接DE,过点D作DF⊥DE交AC于点F,连接EF,点H在线段AD上,且DH=AD,连接EH,HF,记图中阴影部分的面积为S1,△EHF的面积记为S2,则S1=_____,S2的取值范围是_____.三、解答题(共66分)19.(10分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型乙型(1)如何进货,进货款恰好为元?(2)设商场购进甲种节能灯只,求出商场销售完节能灯时总利润与购进甲种节能灯之间的函数关系式;(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的,此时利润为多少元?20.(6分)已知一次函数的图象经过点(-2,-7)和(2,5),求该一次函数解析式并求出函数图象与y轴的交点坐标.21.(6分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交于y轴于点H.(1)连接BM,动点P从点A出发,沿折线ABC方向以1个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(2)在(1)的情况下,当点P在线段AB上运动时,是否存在以BM为腰的等腰三角形BMP?如存在,求出t的值;如不存在,请说明理由.22.(8分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C的坐标为(2,8),点A的坐标为(26,0),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.(1)当t为何值时,四边形ABDE是矩形;(2)当t为何值时,DE=CO?(3)连接AD,记△ADE的面积为S,求S与t的函数关系式.23.(8分)益民商店经销某种商品,进价为每件80元,商店销售该商品每件售价高干8元且不超过120元若售价定为每件120元时,每天可销售200件,市场调查反映:该商品售价在120元的基础上,每降价1元,每天可多销售10件,设该商品的售价为元,每天销售该商品的数量为件.(1)求与之间的函数关系式;(2)商店在销售该商品时,除成本外每天还需支付其余各种费用1000元,益民商店在某一天销售该商品时共获利8000元,求这一天该商品的售价为多少元?24.(8分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,线段OA,OC的长分别是m,n且满足(m-6)2+=0,点D是线段OC上一点,将△AOD沿直线AD翻折,点O落在矩形对角线AC上的点E处(1)求线段OD的长(2)求点E的坐标(3)DE所在直线与AB相交于点M,点N在x轴的正半轴上,以M、A、N、C为顶点的四边形是平行四边形时,求N点坐25.(10分)如图,已知的三个顶点坐标为,,.(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标;(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标;(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.26.(10分)如图,在中,,点M、N分别在BC所在的直线上,且BM=CN,求证:△AMN是等腰三角形.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据反比例函数自变量不为0,即可得解.【详解】解:∵函数为反比例函数,其自变量不为0,∴∴故答案为A.【点睛】此题主要考查反比例函数的性质,熟练掌握,即可解题.2、C【解析】
根据加权平均数公式列出算式求解即可.【详解】解:这名同学一天的生活费用的平均数=.故答案为C.【点睛】本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键3、A【解析】
根据已知条件作出图像,连接BD,根据垂直平分线的性质可得BD=AD,可知两三角形的周长差为AB,结合条件可求出腰长,再由周长可求出BC,即可得出答案.【详解】如图,连接BD,∵D在线段AB的垂直平分线上,∴BD=AD,∴BD+DC+BC=AC+BC=38cm,且AB+AC+BC=60cm,∴AB=60-38=22cm,∴AC=22cm,∴BC=38-AC=38-22=16cm,即等腰三角形的腰为22cm,底为16cm,故选A.【点睛】此题主要考查垂直平分线的性质,解题的关键是正确作出辅助线再来解答.4、B【解析】
根据多项式提取公因式的方法计算即可.【详解】解:x2m﹣xm=xm(xm-1)所以另一个因式为xm-1故选B【点睛】本题主要考查因式分解,关键在于公因式的提取.5、A【解析】分析:先根据“待定系数法”确定一次函数解析式,再检验直线解析式是否满足各点的横纵坐标.详解:设经过两点(0,3)和(−2,0)的直线解析式为y=kx+b,则,解得,∴y=x+3;A.当x=−4时,y=×(−4)+3=−3,点在直线上;B.当x=4时,y=×4+3=9≠6,点不在直线上;C.当x=6时,y=×6+3=12≠9,点不在直线上;D.当x=−6时,y=×(−6)+3=−6≠6,点不在直线上;故选A.点睛:本题考查用待定系数法求直线解析式以及一定经过某点的函数应适合这个点的横纵坐标,用待定系数法求出一次函数的解析式是解答本题的关键.6、D【解析】
根据轴对称图形的概念求解.矩形是轴对称图形,可以左右重合和上下重合.【详解】解:矩形是轴对称图形,可以左右重合和上下重合,故可以是矩形的对称轴,故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.7、B【解析】
直接利用提取公因式法分解因式的步骤分析得出答案.【详解】解:A.ab+cd,没有公因式,故此选项错误;B.mn+m2=m(n+m),故此选项正确;C.x2﹣y2,没有公因式,故此选项错误;D.x2+2xy+y2,没有公因式,故此选项错误.故选B.【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.8、B【解析】分析:根据函数图像的性质解决即可.解析:的图像经过第一、三、四象限,所以不经过第二象限.故选B.9、C【解析】
依次计算+、-、×、÷,再进行判断.【详解】当□为“-”时,x2当□为“+”时,x2当□为“×”时,x2当□为“÷”时,x2所以结果为x的有—或÷.故选:C.【点睛】考查了分式的加、减、乘、除运算,解题关键是熟记其运算法则.10、C【解析】
根据众数的概念:一组数据中出现次数最多的数据为这组数据的众数即可得出答案.【详解】根据众数的概念可知,31出现了2次,次数最多,∴这组数据的众数为31,故选:C.【点睛】本题主要考查众数,掌握众数的概念是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】
根据中心对称的定义即可求解.【详解】在平面内将一个图形绕某一定点旋转1度,图形的这种变化叫做中心对称.故答案为1.【点睛】本题考查了中心对称的定义:把一个图形绕着某个点旋转1°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.掌握定义是解题的关键.12、1【解析】
众数是出现次数最多的数,据此求解即可.【详解】解:数据1出现了3次,最多,所以众数为1,故答案为:1.【点睛】此题考查了众数的知识.众数是这组数据中出现次数最多的数.13、1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.14、120【解析】
根据菱形的面积等于对角线积的一半,即可求得答案.【详解】解:菱形ABCD的面积【点睛】此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.15、1【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为=1,故答案为:1.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.16、1.【解析】
把点A(1,1)代入函解析式即可求出m的值.【详解】解:把点A(1,1)代入函解析式得1=,解得m=1.
故答案为:1.【点睛】本题考查反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解题的关键.17、1【解析】
连接DC,由垂直平分线的性质可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用锐角三角函数定义可得CD的长,利用“在直角三角形中,30°角所对的直角边等于斜边的一半.”可得DE的长.【详解】解:连接DC,∵∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,∴DC=DA,∴∠ACD=∠A=30°,∠BCD=30°,,∵∠BCD=30°,,∴DE=1,故答案为1.【点睛】本题主要考查了直角三角形的性质和垂直平分线的性质,做出恰当的辅助线是解答此题的关键.18、【解析】
作EM⊥BC于M,作FN⊥AD于N,根据题意可证△ADF≌△BDE,可得△DFE是等腰直角三角形.可证△BME≌△ANF,可得NF=BM.所以S1=HD×BD,
代入可求S1.由点E是边AB上的动点(不与A,B点重合),可得DE垂直AB时DE最小,即,且S2=S△DEF-S1,代入可求S2的取值范围【详解】作EM⊥BC于M,作FN⊥AD于N,∵EM⊥BD,AD⊥BC∴EM∥AD∵△ABC是等腰直角三角形,AD⊥BC,AB=5∴∠B=∠C=45°=∠BAD=∠DAC,BD=CD=AD=∵DF⊥DE∴∠ADF+∠ADE=90°且∠ADE+∠BDE=90°∴∠ADF=∠BDE且AD=BD,∠B=∠DAF=45°∴△ADF≌△BDE,∴AF=BE,DE=DF∴△DEF是等腰直角三角形,∵AF=BE,∠B=∠DAF=45°,∠EMB=∠ANF=90°∴△BME≌△ANF∴NF=BM∵∵点E是边AB上的动点∴∵∴【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质,关键是证△DEF是等腰直角三角形.三、解答题(共66分)19、(1)乙型节能灯为800;(2);(3)购进乙型节能灯只时的最大利润为元.【解析】
(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200−x)只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场应购进甲开型节能灯x只,根据题意列出函数解析式即可;(3)根据(2)的结论解答即可.【详解】(1)设商场应购进甲型节能灯只,则乙型节能灯为只.根据题意得,,解得,所以乙型节能灯为:;(2)设商场应购进甲型节能灯只,商场销售完这批节能灯可获利元.根据题意得,;(3)商场销售完节能灯时获利最多且不超过进货价的,,.,随的增大而减小,时,最大元.商场购进甲型节能灯只,购进乙型节能灯只时的最大利润为元.【点睛】此题考查一次函数的应用,一元一次不等式的应用,解题关键在于列出方程.20、y=3x-1,函数图象与y轴的交点坐标(0,-1).【解析】
设一次函数解析式为y=kx+b,把一次函数图象上两个已知点的坐标代入得到,然后解方程组求出k、b即可得到一次函数解析式;计算出一次函数当x=0时所对应的函数值即可这个一次函数的图象与y轴的交点坐标.【详解】设该一次函数解析式为把点(-2,-7)和(2,5)代入得:解得当x=0时,y=-1∴交点坐标为(0,-1)【点睛】此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于利用待定系数法求解析式.21、(1)详见解析;(2)当t=1或时,△PMB为以BM为腰的等腰三角形.【解析】
(1)设点M到BC的距离为h,由△ABC的面积易得h,利用分类讨论的思想,三角形的面积公式①当P在直线AB上运动;②当P运动到直线BC上时分别得△PBM的面积;(2)分类讨论:①当MB=MP时,PH=BH,解得t;②当BM=BP时,利用勾股定理可得BM的长,易得t.【详解】解:(1)设点M到BC的距离为h,由S△ABC=S△ABM+S△BCM,即,∴h=,①当P在直线AB上运动时△PBM的面积为S与P的运动时间为t秒关系为:S=(5﹣t)×,即S=﹣(0≤t<5);②当P运动到直线BC上时△PMB的面积为S与P的运动时间为t秒关系为:S=[5﹣(10﹣t)]×,即S=t-(5<t≤10);(2)存在①当MB=MP时,∵点A的坐标为(﹣3,4),AB=5,MB=MP,MH⊥AB,∴PH=BH,即3﹣t=2,∴t=1;②当BM=BP时,即5﹣t=,∴综上所述,当t=1或时,△PMB为以BM为腰的等腰三角形.【点睛】此题考查四边形综合题,解题关键在于利用三角形面积公式进行计算22、(1)t=;(2)t=6;(3)S=t2﹣13t.【解析】
(1)根据矩形的判定定理列出关系式,计算即可;(2)根据平行四边形的判定定理和性质定理解答;(3)分点E在OA上和点E在AB上两种情况,根据三角形的面积公式计算即可.【详解】(1)∵点C的坐标为(2,8),点A的坐标为(26,0),∴OA=26,BC=24,AB=8,∵D(E)点运动的时间为t秒,∴BD=t,OE=3t,当BD=AE时,四边形ABDE是矩形,即t=26﹣3t,解得,t=;(2)当CD=OE时,四边形OEDC为平行四边形,DE=OC,即24﹣t=3t,解得,t=6;(3)如图1,当点E在OA上时,AE=26﹣3t,则S=×AE×AB=×(26﹣3t)×8=﹣12t+104,当点E在AB上时,AE=3t﹣26,BD=t,则S=×AE×DB=×(3t﹣26)×t=t2﹣13t.【点睛】此题考查四边形综合题,解题关键在于利用矩形的判定定理和平行四边形的判定定理和性质来解答23、(1)y=−10x+1400;(2)这一天的销售单价为110元.【解析】
(1)首先利用当售价定为每件120元时每天可售出200件,该商品销售单价在120元的基础上,每降1元,每天可多售出10件,进而求出每天可表示出销售商品数量;
(2)设商场日盈利达到8000元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.【详解】解:(1)由题意得:y=200+10(120−x)=−10x+1400;∴y=−10x+1400;
(2)由题意可得:
(−10x+1400)(x−80)−1000=8000,
整理得:x2−220x+12100=0,
解得:x1=x2=110,
答:这一天的销售单价为110元.【点睛】此题主要考查了一次函数的应用以及一元二次方程的应用,正确得出y与x的关系式是解题关键.24、(1)OD=3;(2)E点(,)(3)点N为(,0)或(,0)【解析】
(1)根据非负性即可求出OA,OC;根据勾股定理得出OD长;(2)由三角形面积求法可得,进而求出EG和DG,即可解答;
(3)由待定系数法求出DE的解析式,进而求出M点坐标,再利用平行四边形的性质解答即可.【详解】解:(1)∵线段OA,OC的长分别是m,n且满足∴OA=m=6,OC=n=8;设DE=x,由翻折的性质可得:OA=AE=6,OD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024辣椒购销合同争议的解决方式
- 2025年度智能化厨房设备采购与安装一体化合同4篇
- 2025年投标采购心得体会总结与合同管理创新合同3篇
- 个人房屋转让协议书合同范本
- 2024年驾校场地使用权益转让合同
- 2025年度煤矿废弃资源煤矸石回收利用合同4篇
- 2025年度油气田钻井工程合同执行监督合同范本4篇
- 全新2025年度医疗设备采购与安装合同5篇
- 2025版污水处理厂智能化改造与运营维护协议3篇
- 2025版领队与纪念品供应商合作协议范本4篇
- 2024-2030年中国护肝解酒市场营销策略分析与未来销售渠道调研研究报告
- 人教版高中数学必修二《第十章 概率》单元同步练习及答案
- 智慧校园信息化建设项目组织人员安排方案
- 浙教版七年级上册数学第4章代数式单元测试卷(含答案)
- 一病一品成果护理汇报
- AQ-T 1009-2021矿山救护队标准化考核规范
- 盐酸埃克替尼临床疗效、不良反应与药代动力学的相关性分析的开题报告
- 消防设施安全检查表
- 组合结构设计原理 第2版 课件 第6、7章 钢-混凝土组合梁、钢-混凝土组合剪力墙
- 建筑公司资质常识培训课件
- GB/T 26316-2023市场、民意和社会调查(包括洞察与数据分析)术语和服务要求
评论
0/150
提交评论