2024届江苏省高邮市阳光双语八年级下册数学期末质量检测试题含解析_第1页
2024届江苏省高邮市阳光双语八年级下册数学期末质量检测试题含解析_第2页
2024届江苏省高邮市阳光双语八年级下册数学期末质量检测试题含解析_第3页
2024届江苏省高邮市阳光双语八年级下册数学期末质量检测试题含解析_第4页
2024届江苏省高邮市阳光双语八年级下册数学期末质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省高邮市阳光双语八年级下册数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下图中能反映y与x的函数关系式的大致图象是()A. B. C. D.2.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是().A.y1+y2>0 B.y1+y2<0 C.y1-y2>0 D.y1-y2<03.如图,在中,,,点为上一点,,于点,点为的中点,连接,则的长为()A.5 B.4 C.3 D.24.如图,直线与直线交于点,则根据图象可知不等式的解集是A. B. C. D.5.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<-2 B.-2<x<-1 C.-2<x<0 D.-1<x<06.已知关于x的不等式(2﹣a)x>1的解集是x<;则a的取值范围是()A.a>0 B.a<0 C.a<2 D.a>27.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为()A. B.2 C. D.38.下列说法中,正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是矩形D.对角线互相垂直的平行四边形是矩形9.一个多边形的每个内角都等于135°,则这个多边形的边数为()A.5 B.6 C.7 D.810.化简20的结果是()A.52 B.210 C.211.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=16,AD⊥BC,垂足为D,∠ACB的平分线交AD于点E,则AE的长为()A. B.4 C. D.612.一次函数的图象不经过哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每题4分,共24分)13.如图所示,在矩形纸片ABCD中,点M为AD边的中点,将纸片沿BM,CM折叠,使点A落在A1处,点D落在D1处.若∠1=30°,则∠BMC的度数为____.

14.如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=_____.15.计算的结果是_____。16.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为_____.17.已知线段a,b,c能组成直角三角形,若a=3,b=4,则c=_____.18.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是,则飞机着陆后滑行的最长时间为秒.三、解答题(共78分)19.(8分)已知某服装厂现有种布料70米,种布料52米,现计划用这两种布料生产、两种型号的时装共80套.已知做一套型号的时装需用A种布料1.1米,种布料0.4米,可获利50元;做一套型号的时装需用种布料0.6米,种布料0.9米,可获利45元.设生产型号的时装套数为,用这批布料生产两种型号的时装所获得的总利润为元.(1)求(元)与(套)的函数关系式.(2)有几种生产方案?(3)如何生产使该厂所获利润最大?最大利润是多?20.(8分)某商贩出售一批进价为l元的钥匙扣,在销售过程中发现钥匙扣的日销售单价x(元)与日销售量y(个)之间有如下关系:(1)根据表中数据在平面直角坐标系中,描出实数对(x,y)对应的点;(2)猜想并确定y与x的关系式,并在直角坐标系中画出x>0时的图像;(3)设销售钥匙扣的利润为T元,试求出T与x之间的函数关系式:若商贩在钥匙扣售价不超过8元的前提下要获得最大利润,试求销售价x和最大利润T.21.(8分)如图,△ABC中,∠ACB=90°,D是AB中点,过点B作直线CD的垂线,垂足为E,求证:∠EBC=∠A.22.(10分)计算:(1)(2)(3)若与|x-y-3|互为相反数,则x+y的值为多少?23.(10分)按要求完成下列尺规作图(不写作法,保留作图痕迹)(1)如图①,点A绕某点M旋转后,A的对应点为,求作点M.(2)如图②,点B绕某点N顺时针旋转后,B的对应点为,求作点N.24.(10分)如图,DE是△ABC的中位线,延长DE至R,使EF=DE,连接BF.(1)求证:四边形ABFD是平行四边形;(2)求证:BF=DC.25.(12分)(1)化简:;(2)先化简,再求值:,选一个你喜欢的数求值.26.王老师为了了解学生在数学学习中的纠错情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的八年级(5)班和八年级(6)班进行了检测.并从两班各随机抽取10名学生的得分绘制成下列两个统计图.根据以上信息,整理分析数据如下:班级平均分(分)中位数(分)众数(分)八年级(5)班a2424八年级(6)班24bc(1)求出表格中a,b,c的值;(2)你认为哪个班的学生纠错得分情况比较整齐一些,通过计算说明理由.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据步行速度慢,路程变化慢,等车时路程不变化,乘公交车时路程变化快,看比赛时路程不变化,回家时乘车路程变化快,可得答案.【详解】步行先变化慢,等车路程不变化,乘公交车路程变化快,看比赛路程不变化,回家路程变化快.故选A.【点睛】本题考查了函数图象,根据童童的活动得出函数图形是解题关键,注意选项B中步行的速度快不符合题意.2、C【解析】试题分析:根据k<1,正比例函数的函数值y随x的增大而减小解答.∵直线y=kx的k<1,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>1.考点:(1)、一次函数图象上点的坐标特征;(2)、正比例函数的图象.3、D【解析】

利用三角形的中位线定理即可求答,先证明出E点为CD的中点,F点为AC的中点,证出EF为AC的中位线.【详解】因为BD=BC,BE⊥CD,

所以DE=CE,

又因为F为AC的中点,

所以EF为ΔACD的中位线,

因为AB=10,BC=BD=6,

所以AD=10-6=4,

所以EF=×4=2,故选D【点睛】本题考查三角形的中位线等于第三边的一半,学生们要熟练掌握即可求出答案.4、A【解析】

根据函数图象交点右侧直线y=ax+b图象在直线:y=mx+n图象的上面,即可得出不等式ax+b>mx+n的解集.【详解】解:直线与直线交于点,不等式为:.故选:.【点睛】此题主要考查了一次函数与不等式,利用数形结合得出不等式的解集是考试重点.5、B【解析】试题分析:根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B.6、D【解析】

根据已知不等式的解集,结合x的系数确定出1-a为负数,求出a的范围即可.【详解】∵关于x的不等式(1﹣a)x>1的解集是x<,∴1﹣a<0,解得:a>1.故选:D.【点睛】考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.7、C【解析】

延长BC到E使BE=AD,利用中点的性质得到CM=DE=AB,再利用勾股定理进行计算即可解答.【详解】解:延长BC到E使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故选:C.【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.8、C【解析】

根据菱形和矩形的判定定理即可得出答案.【详解】解:A.对角线相等的平行四边形是矩形,所以A错误;B.对角线互相垂直的平行四边形是菱形,所以B错误;C.对角线相等的平行四边形是矩形,所以C正确;D.对角线互相垂直的平行四边形是菱形,所以D错误;故选C.【点睛】本题考查特殊平行四边形中菱形与矩形的判定,注意区分特殊平行四边形的判定方法是解题关键.9、D【解析】

先求出多边形的每一个外角的度数,继而根据多边形的外角和为360度进行求解即可.【详解】∵一个多边形的每个内角都等于135°,∴这个多边形的每个外角都等于180°-135°=45°,∵多边形的外角和为360度,∴这个多边形的边数为:360÷45=8,故选D.【点睛】本题考查了多边形的外角和内角,熟练掌握多边形的外角和为360度是解本题的关键.10、C【解析】

直接利用二次根式的乘法运算法则,计算得出答案.【详解】解:20=故选择:C.【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题的关键.11、C【解析】

在Rt△ABD中,利用等腰直角三角形的性质列方程求解可求出AD和BD的长度,在Rt△ADC中;根据直角三角形中30度角所对的直角边是斜边的一半的性质可列方程解出CD,同理可得DE的长度,再利用AE=AD−DE即可求出AE的长度.【详解】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,即△ABD、△ADC和△CDE为直角三角形,在Rt△ABD中,∵∠ADB=90°,AB=16,∠B=45°,∴∠B=∠BAD=45°,则AD=BD,设AD=BD=x,由勾股定理得:,解得:,即AD=BD=,在Rt△ADC中,∵∠ADC=90°,∠ACD=60°,AD=,∴∠CAD=30°,则,设CD=x,则AC=2x,由勾股定理得:,解得:,即CD,∵CE平分∠ACD,∴∠ECD=30°,在Rt△CDE中,同理得:DE,∴AE=AD﹣DE=﹣=,故选:C.【点睛】本题主要考查了勾股定理、等腰直角三角形的性质和直角三角形中30度角所对的直角边是斜边的一半,根据勾股定理构造方程是解题的关键.12、A【解析】

根据一次函数的性质一次项系数小于0,则函数一定经过二,四象限,常数项-1<0,则一定与y轴负半轴相交,据此即可判断.【详解】解:∵k=-1<0,b=-1<0∴一次函数的图象经过二、三、四象限一定不经过第一象限.故选:A.【点睛】本题主要考查了一次函数的性质,对性质的理解一定要结合图象记忆.二、填空题(每题4分,共24分)13、105°【解析】

根据∠1=30°,得∠A1MA+∠DMD1=180°-30°=150°,根据折叠的性质,得∠A1MB=AMB,∠D1MC=∠DMC,从而求解.【详解】由折叠,可知∠A1MB=AMB,∠D1MC=∠DMC.因为∠1=30°,所以∠A1MA+∠DMD1=180°-30°=150°所以∠AMB+∠DMC=∠A1MA+∠DMD1=×150°=75°,所以∠BMC的度数为180°-75°=105°.故答案为:105°【点睛】本题考查的是矩形的折叠问题,理解折叠后的角相等是关键.14、1【解析】

把点A的坐标代入一次函数y=3x﹣2解析式中,即可求出n的值.【详解】∵点A(1,n)在一次函数y=3x﹣2的图象上,∴n=3×1﹣2=1.故答案为:1.【点睛】本题考查了点在一次函数图象上的条件,即点的坐标满足一次函数解析式,正确计算是解题的关键.15、【解析】

根据运算顺序,先对括号里进行通分,给a的分子分母都乘以a,然后利用分式的减法法则,分母不变,只把分子相减,进而除法法则,除以一个数等于乘以这个数的倒数,并把a2-1分解因式,约分即可得到化简结果.【详解】解:故答案为:【点睛】此题考查学生灵活运用通分、约分的方法进行分式的加减及乘除运算,是一道基础题.注意运算的结果必须是最简分式.16、1【解析】

根据勾股定理求出BC,根据线段垂直平分线得出AE=CE,求出△ABE的周长=AB+BC,代入求出即可.【详解】解:在△ABC中,∠B=90°,AB=3,AC=5,由勾股定理得:BC=4,∵线段AC的垂直平分线DE,∴AE=EC,∴△ABE的周长为AB+BE+AE=AB+BE+CE=AB+BC=3+4=1,故答案为1.【点睛】本题主要考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是本题的关键.17、5或【解析】

由于没有指明斜边与直角边,因此要分4为斜边与4为直角边两种情况来求解.【详解】分两种情况,当4为直角边时,c为斜边,c==5;当长4的边为斜边时,c==,故答案为:5或.【点睛】本题利用了勾股定理求解,注意要讨论c为斜边或是直角边的情况.18、1.【解析】

把解析式化为顶点式,再根据二次函数的性质得出答案即可。【详解】解:,∴当t=1时,s取得最大值,此时s=2.故答案为1.考点:二次函数的应用;最值问题;二次函数的最值.三、解答题(共78分)19、(1)y=5x+3600;(2)共有5种生产方案;(3)当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.【解析】

(1)根据题意,根据总利润=型号的总利润+型号的总利润,即可求出(元)与(套)的函数关系式;(2)根据A、B两种布料的总长列出不等式,即可求出x的取值范围,从而求出各个方案;(3)一次函数的增减性,求最值即可.【详解】解:(1)由题意可知:y=50x+45(80-x)=5x+3600即(元)与(套)的函数关系式为y=5x+3600;(2)由题意可知:解得:故可生产型号的时装40套、生产型号的时装80-40=40套或生产型号的时装41套、生产型号的时装80-41=39套或生产型号的时装42套、生产型号的时装80-42=38套或生产型号的时装43套、生产型号的时装80-43=37套或生产型号的时装44套、生产型号的时装80-44=36套,共5种生产方案答:共有5种生产方案.(3)∵一次函数y=5x+3600中,,5>0∴y随x的增大而增大∴当x=44时,y取最大值,ymax=44×5+3600=3820即当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.答:当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.【点睛】此题考查的是一次函数的应用和一元一次不等式组的应用,掌握实际问题中的等量关系、不等关系和一次函数的增减性是解决此题的关键.20、(1)见解析;(2),见解析;(3),,(元).【解析】

(1)根据已知各点坐标进而在坐标系中描出即可;(2)利用各点坐标乘积不变进而得出函数解析式,再画图象;(3)利用利润=销量×(每件利润),进而得出答案.【详解】解:(1)如图:(2)因为各点坐标xy乘积不变,猜想y与x为形式的反比例函数,由题提供数据可知固定k值为24,所以函数表达式为:,连线如图:(3)利润=销量×(每件利润),利润为T,销量为y,由(2)知,每件售价为1,则每件利润为x-1,所以,当最大时,最小,而此时最大,根据题意,钥匙扣售价不超过8元,所以时,(元).【点睛】此题主要考查了反比例函数的应用,正确利用反比例函数增减性得出函数最值是解题关键.21、详见解析【解析】

由直角三角形斜边中线等于斜边的一半可得CD=BD,从而可得∠DCB=∠ABC,再根据直角三角形两锐角互余通过推导即可得出答案.【详解】∵∠ACB=90°,∴∠A+∠ABC=90°,又∵D是AB中点,∴CD=BD,∴∠DCB=∠ABC,又∵∠E=90°,∴∠ECB+∠EBC=90°,∴∠EBC=∠A.【点睛】本题考查了直角三角形斜边中线的性质,直角三角形两锐角互余,等腰三角形的性质,熟练掌握和灵活运用相关性质是解题的关键.22、(1);(2)﹣6;(3)1.【解析】分析:(1)先化简每个二次根式,然后合并同类二次根式即可;(2)先算乘法、化简二次根式,去掉绝对值符号,然后合并即可;(3)由两非负数之和为0,两非负数分别为0列出关于x与y的方程组,求出方程组的解得到x与y的值,即可求出x+y的值.详解:(1)原式==;(2)原式===-6;(3)∵+|x﹣y﹣3|=0,∴,解得:,则x+y=15+12=1.点睛:本题考查了二次根式的混合运算和解二元一次方程组,以及非负数的性质.解题的关键是熟练掌握二次根式的运算法则和非负数的性质.23、(1)见解析;(2)见解析【解析】

(1)连结AA′,作AA′的垂直平分线与AA′的交点为M点;

(2)连结BB′,作BB′的垂直平分线得到BB′的中点,然后以BB′为直径作圆,则圆与BB′的垂直平分线的交点即为N点.【详解】解:如图①,点M即为所求;如图②,点N即为所求.①②【点睛】考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论