




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省如皋市南片区八校联考2024届八年级数学第二学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列说法错误的是()A.“买一张彩票中大奖”是随机事件B.不可能事件和必然事件都是确定事件C.“穿十条马路连遇十次红灯”是不可能事件D.“太阳东升西落”是必然事件2.已知下列图形中的三角形顶点都在正方形网格的格点上,图中的三角形是直角三角形的是()A. B.C. D.3.若无解,则m的值是()A.3 B.﹣3 C.﹣2 D.24.如图,在Rt△ABC中,CD是斜边AB上的中线.若∠A=20°,则∠BDC=()A.30° B.40° C.45° D.60°5.下列命题中,真命题是()A.相等的角是直角B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有且只有一条直线6.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm7.已知代数式-m2+4m-4,无论m取任何值,它的值一定是()A.正数 B.负数 C.非正数 D.非负数8.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A. B. C. D.9.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD的长度为()A.3 B.4 C.4.8 D.510.下列图案中,不是中心对称图形的是()A. B.C. D.二、填空题(每小题3分,共24分)11.若点A(x1,y1)和点B(x1+1,y2)都在一次函数y=2018x-2019的图象上,则y1_______y2(选择“>”、“<”或“=”填空).12.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=_____________.13.如图,点D是等边内部一点,,,.则的度数为=________°.14.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是_____.15.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.16.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离与慢车行驶的时间之间的函数关系如图所示,则快车的速度为__________.17.一个不透明的袋中装有3个红球,2个黄球,1个白球,每个球除颜色外都相同,从袋中任意摸出一球,则摸到__________球的可能性最大。(填“红色”、“黄色”或“白色”)18.如图,将正五边形ABCDE的C点固定,并按顺时针方向旋转一定的角度,可使得新五边形A′B′C′D′E′的顶点D′落在直线BC上,则旋转的角度是______________度.三、解答题(共66分)19.(10分)如图,在正方形网格中,△TAB的顶点坐标分别为T(1,1)、A(2,3)、B(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将△TAB放大为原来的3倍,放大后点A、B的对应点分别为A'、B',画出△TA'B':(2)写出点A'、B'的坐标:A'()、B'();(3)在(1)中,若C(a,b)为线段AB上任一点,则变化后点C的对应点C'的坐标为().20.(6分)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.21.(6分)如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设.(1)证明:;(2)当时,六边形周长的值是否会发生改变,请说明理由;(3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由.22.(8分)如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:(1)此一次函数的解析式;(2)△AOC的面积.23.(8分)若a>0,M=,N=.(1)当a=3时,计算M与N的值;(2)猜想M与N的大小关系,并证明你的猜想.24.(8分)如图,已知过点B(1,0)的直线与直线:相交于点P(-1,a).且l1与y轴相交于C点,l2与x轴相交于A点.(1)求直线的解析式;(2)求四边形的面积;(3)若点Q是x轴上一动点,连接PQ、CQ,当△QPC周长最小时,求点Q坐标.25.(10分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,6),请在所给网格区域(含边界)上按要求画整点四边形.(1)在图1中画一个整点四边形ABCD,四边形是轴对称图形,且面积为10;(2)在图2中画一个整点四边形ABCD,四边形是中心对称图形,且有两个顶点各自的横坐标比纵坐标小1.26.(10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据随机事件和确定事件以及不可能事件和必然事件的概念即可解答.【详解】A、“买一张彩票中大奖”是随机事件,正确,不合题意;B、不可能事件和必然事件都是确定事件,正确,不合题意;C、“穿十条马路连遇十次红灯”是不可能事件,错误,符合题意;D、太阳东升西落”是必然事件,正确,不合题意.故选:C.【点睛】本题考查了随机事件,确定事件,不可能事件,必然事件的概念,正确理解概念是解题的关键.2、D【解析】
根据勾股定理求出三角形的三边,然后根据勾股定理的逆定理即可判断.【详解】由勾股定理可得:A、三角形三边分别为3、,2;B、三角形三边分别为、,2;C、三角形三边分别为、2,3;D、三角形三边分别为2、,;∵D图中(2)2+()2=()2,其他三角形不符合勾股定理逆定理,∴图中的三角形是直角三角形的是D,故选:D.【点睛】此题考查了勾股定理和勾股定理逆定理的运用,本题中根据勾股定理计算三角形的三边长是解题的关键.3、D【解析】方程两边同乘以x-3可得m+1-x=0,因无解,可得x=3,代入得m=2,故选D.4、B【解析】
根据直角三角形斜边上的中线,可得CD=AD,所以∠A=∠DCA=20°,再三角形外角性质即可得到∠BDC.【详解】∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD.∴∠A=∠DCA=20°,∴∠BDC=∠A+∠DCA=20°+20°=40°.故选B.【点睛】本题考查直角三角形斜边上的中线的性质,熟记性质是解题的关键.5、D【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A,不正确,因为相等的角也可能是锐角或钝角;B,不正确,因为前提是在同一平面内;C,不正确,因为两直线平行,同位角相等;D,正确,因为两点确定一条直线.故选D.【点睛】本题考查命题与定理.6、C【解析】
连接、过作于,先求出、值,再求出、值,求出、值,代入求出即可.【详解】连接、,过作于∵在中,,,∴,∴在中,∴在中,∴,∵的垂直平分线∴同理∵∴∴在中,∴同理∴故选:C.【点睛】本题考查垂直平分线的性质、含直角三角形的性质,利用特殊角、垂直平分线的性质添加辅助线是解题关键,通过添加的辅助线将复杂问题简单化,更容易转化边.7、C【解析】
直接利用完全平方公式分解因式进而利用偶次方的性质分析得出即可.【详解】∵-m2+4m-4=-(m2-4m+4)=-(m-2)2,(m-2)2≥0,∴-(m-2)2≤0,故选C.【点睛】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.8、A【解析】
∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!9、D【解析】
已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC的中位线,即可得DE==3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.10、D【解析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;对于图A,分析可知,其绕着图形的圆心旋转180°后与原来的图形重合,故是中心对称图形,同理再分析其他选项即可.【详解】根据中心对称图形的概念可知,A、B、C都是中心对称图形,不符合题意;D不是中心对称图形,符合题意.故选:D.【点睛】本题考查了中心对称图形的判断,解题的关键是掌握中心对称图形定义;二、填空题(每小题3分,共24分)11、<【解析】
先根据直线y=1018x-1019判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】∵直线y=1018x-1019,k=1018>0,∴y随x的增大而增大,又∵x1<x1+1,∴y1<y1.故答案为:<.【点睛】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.12、【解析】
连接BD,BF,由正方形性质求出∠DBF=90〫,根据勾股定理求出BD,BF,再求DF,再根据直角三角形斜边上的中线等于斜边一半求BH.【详解】连接BD,BF,∵四边形ABCD和四边形BEFG是正方形,∴∠DBC=∠GBF=45〫,BD=,BF=,∴∠DBF=90〫,∴DF=,∵H为线段DF的中点,∴BH=故答案为【点睛】本题考核知识点:正方形性质,直角三角形.解题关键点:熟记正方形,直角三角形的性质.13、1【解析】
将△BCD绕点B逆时针旋转60°得到△ABD',根据已知条件可以得到△BDD'是等边三角形,△ADD'是直角三角形,即可求解.【详解】将△BCD绕点B逆时针旋转60°得到△ABD',∴BD=BD',AD'=CD,∴∠DBD'=60°,∴△BDD'是等边三角形,∴∠BDD'=60°,∵BD=1,DC=2,AD=,∴DD'=1,AD'=2,在△ADD'中,AD'2=AD2+DD'2,∴∠ADD'=90°,∴∠ADB=60°+90°=1°,故答案为1.【点睛】本题考查旋转的性质,等边三角形和直角三角形的性质;能够通过图形的旋转构造等边三角形和直角三角形是解题的关键.14、a<﹣1【解析】
根据不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变即可解本题.【详解】解:∵不等式(a+1)x>a+1的解集为x<1,∴a+1<0,∴a<﹣1,故答案为:a<﹣1.【点睛】本题考查了不等式的基本性质,熟练掌握不等式两边同时除以一个负数不等号方向改变是解决本题的关键.15、或【解析】
先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.【详解】根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),则×2×|b|=1,解得|b|=1,∴b=±1,①当b=1时,与y轴交点为(0,1),∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;②当b=-1时,与y轴的交点为(0,-1),∴2k-1=0,解得k=,∴函数解析式为y=-x-1,综上,这个一次函数的解析式是或,故答案为:或.【点睛】本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.16、150km/h【解析】
假设快车的速度为a(km/h),慢车的速度为b(km/h).当两车相遇时,两车各自所走的路程之和就是甲乙两地的距离,由此列式4a+4b=900①,另外,由于快车到达乙地的时间比慢车到达甲地的时间要短,图中的(12,900)这个点表示慢车刚到达甲地,这时的两车距离等于两地距离,而x=12就是慢车正好到达甲地的时间,所以,12b=900②,①和②可以求出快车的速度.【详解】解:设快车的速度为a(km/h),慢车的速度为b(km/h),∴4(a+b)=900,∵慢车到达甲地的时间为12小时,∴12b=900,b=75,∴4(a+75)=900,解得:a=150;∴快车的速度为150km/h.故答案为:150km/h.【点睛】此题主要考查了一次函数的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系得出b的值.17、红色【解析】
可根据概率公式计算出红球、黄球、白球摸到的概率,然后比较即可【详解】解:总共有3+2+1=6个球,摸到红球的概率为:,摸到黄球的概率为:,摸到白球的概率为:,所以红色球的可能性最大.【点睛】本题考查可能性的大小,可根据随机等可能事件的概率计算公式分别计算出它们的概率,然后比较即可,也可以列举出所有可能的结果,比较即可.18、1°【解析】
由于正五边形的每一个外角都是1°,所以将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转1°,就可使新五边形A′B′C′D′E′的顶点D′落在直线BC上.【详解】解:将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转1度,可使得新五边形A′B′C′D′E′的顶点D′落在直线BC上.
故答案为:1.【点睛】本题考查正多边形的外角及旋转的性质:
(1)任何正多边形的外角和是360°;
(2)①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.三、解答题(共66分)19、(1)详见解析;(1)A′(4,7),B′(10,4)(3)(3a-1,3b-1)【解析】
(1)根据题目的叙述,在位似中心的同侧将△TAB放大为原来的3倍,得到对应点坐标,正确地作出图形即可,
(1)根据图象确定各点的坐标即可.
(3)根据(1)中变换的规律,即可写出变化后点C的对应点C′的坐标.【详解】解:(1)如图所示:
(1)点A′,B′的坐标分别为:A′(4,7),B′(10,4);
故答案为:(4,7);(10,4);
(3)变化后点C的对应点C′的坐标为:C′(3a-1,3b-1)
故答案为:3a-1,3b-1.【点睛】本题考查了位似变换作图的问题,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.20、1米【解析】
设旗杆的高度为x米,则绳长为(x+1)米,根据勾股定理即可得出关于x的一元一次方程,解之即可得出结论.【详解】设旗杆的高度为x米,则绳长为(x+1)米,
根据题意得:(x+1)2=x2+52,即2x-24=0,
解得:x=1.
答:旗杆的高度是1米.【点睛】此题考查勾股定理的应用,解一元一次方程,根据勾股定理列出关于x的一元一次方程是解题的关键.21、(1)见解析;(2)不变,见解析;(3)能,或【解析】
(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;
(2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;
(3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四边形ABCD=2,当六边形AEFCHG的面积等于时,得到S△BEF+S△DGH=,设GH与BD交于点M,求得GM=x,根据三角形的面积列方程即可得到结论.【详解】解:折叠后落在上,平分,四边形为菱形,同理四边形为菱形,四边形为平行四边形,.不变.理由如下:由得四边形为菱形,为等边三角,为定值.记与交于点.当六边形的面积为时,由得记与交于点,同理即化简得解得,∴当或时,六边形的面积为.【点睛】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x表示出相关的线段,是一道基础题目.22、(1)y=x+2;(2)1【解析】
(1)由图可知、两点的坐标,把两点坐标代入一次函数即可求出的值,进而得出结论;(2)由点坐标可求出的长再由点坐标可知的长,利用三角形的面积公式即可得出结论.【详解】解:(1)由图可知、,,解得,故此一次函数的解析式为:;(2)由图可知,,,,,.答:的面积是1.【点睛】此题考查的是待定系数法求一次函数的解析式及一次函数图象上点的坐标特点,先根据一次函数的图象得出、、三点的坐标是解答此题的关键.23、(1)M=,N=;(2)M<N;证明见解析.【解析】
(1)直接将a=3代入原式求出M,N的值即可;(2)直接利用分式的加减以及乘除运算法则,进而合并求出即可.【详解】(1)当a=3时,M,N;(2)方法一:猜想:M<N.理由如下:M﹣N.∵a>0,∴a+2>0,a+3>0,∴,∴M﹣N<0,∴M<N;方法二:猜想:M<N.理由如下:.∵a>0,∴M>0,N>0,a2+4a+3>0,∴,∴,∴M<N.【点睛】本题考查了分式的加减以及乘除运算,正确通分得出是解题的关键.24、(1)y=-x+1;(2);(3)点Q坐标为(-,0)时△QPC周长最小【解析】
(1)根据点P在直线l2上,求出P的坐标,然后用待定系数法即可得出结论;(2)根据计算即可;(3)作点C关于x轴对称点C',直线C’P与x轴的交点即为所求的点Q,求出点Q的坐标即可.【详解】(1)∵点P(-1,a)在直线l2:y=2x+4上,∴,即,则P的坐标为(-1,2),设直线的解析式为:,那么,解得:,∴的解析式为:.(2)∵直线与y轴相交于点C,∴C的坐标为(0,1).又∵直线与x轴相交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025资产管理公司委托合同(合同版本)
- 全媒体运营师常见考点试题及答案
- 江西西部计划常考试题解析及答案
- 图书管理员社群文化建设试题及答案
- 2024-2025学年高中生物 第2章 第4节 免疫调节教学实录 新人教版必修3
- 电商用户增长黑科技试题及答案
- 第1章 勾股定理 大单元教学设计 2023-2024学年北师大版八年级数学上册
- 《交通安全伴我行:3 发生交通事故后》教学设计-2023-2024学年六年级下册综合实践活动沪科黔科版
- 全国甘肃版信息技术五年级下册新授课 第12课编辑你的声音 教学设计
- 黄山2025年安徽黄山市屯溪区小学新任教师招聘35人笔试历年参考题库附带答案详解
- 学校信息化设备运维服务方案
- 2025-2030中国奶茶店设备全套行业市场现状分析及竞争格局与投资发展研究报告
- 2025年江苏财经职业技术学院单招职业技能测试题库附答案
- 2025年湖南省长沙市开福区审计局招聘4人历年高频重点模拟试卷提升(共500题附带答案详解)
- 人教PEP版英语五年级下册全册教案
- 基础护理学试题及标准答案
- 2025年四川成都市蒲江乡村建设发展集团有限公司招聘笔试参考题库附带答案详解
- 2024版房产经纪人无底薪劳动协议
- 2025年上半年度交通运输部南海航海保障中心公开招聘126人工作人员易考易错模拟试题(共500题)试卷后附参考答案
- 社戒社康培训
- 船舶建造流程
评论
0/150
提交评论