版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆专题训练一、河南省近4年中招圆专题1.河南省2010年中招11.如图,AB切⊙O于点A,BO交⊙O于点C,点D是上异于点C、A的一点,若∠ABO=32°,则∠ADC的度数是______________.14.如图矩形ABCD中,AD=1,AD=,以AD的长为半径的⊙A交BC于点E,则图中阴影部分的面积为______________________.(第14(第14题)(第11题)2.河南省2011年中招10.如图,CB切⊙O于点B,CA交⊙O于点D且AB为⊙O的直径,点E是上异于点A、D的一点.若∠C=40°,则∠E的度数为.3.河南省2012年中招8.如图,已知AB为⊙O的直径,AD切⊙O于点A,,则下列结论不一定正确的是【】A.BA⊥DA B.OC∥AE C.∠COE=2∠CAE D.OD⊥AC4.河南省2013年中招7.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是A.AG=BGB.AB//EFC.AD//BCD.∠ABC=∠ADCEEOFCDBGA第7题圆中线段的最值专题1.(2012浙江宁波3分)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.2.(2013湖北省咸宁市,1,3分)如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.3.(2011浙江台州,10,4分)如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PB切⊙O于点B,则PB的最小值是()A.B.C.3D.24.(2007•常州)如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.B.4.75C.5D.4.8二、圆中阴影面积计算专题1.(2012广东汕头4分)如图,在□ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).2.(宁夏回族自治区)如图,在两个半圆中,大圆的弦MN与小圆相切,D为切点,且MN∥AB,MN=a,ON、CD分别为两圆的半径,求阴影部分的面积.3.(河南省)如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是 ( ) (A)π (B)1.5π (C)2π (D)2.5π4.(2012山东枣庄4分)如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.5.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连AC、BD。(1)求证:AC=BD;(2)若图中阴影部分的面积是,OA=2cm,求OC的长。6.(2011福建泉州,7,3分)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B’,则图中阴影部分的面积是().A.3 B.6C.5 D.47.如图,半圆的直径AB=10,P为AB上一点,点C、D为半圆的三等分点,则阴影部分的面积等于。8.如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于。图6AHBOC9.如图6,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为()图6AHBOCA. B. C. D.10.(2011•贵阳)在▱ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.(1)圆心O到CD的距离是5.(2)求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)11.图中的三块阴影部分由两个半径为1的圆及其外公切线分割而成,如果中间一块阴影的面积等于上下两块面积之和,则这两圆的公共弦长是12.如图,在Rt△ABC中,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为。三、圆中角度计算专题1.(2012山东日照4分)如图,过A、C、D三点的圆的圆心为E,过B、F、E三点的圆的圆心为D,如果∠A=63°,那么∠θ=.[来︿源2.(2013贵州毕节,15,3分)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°3.(2013广东珠海,17,7分)如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A(1)求证:BC为⊙O的切线;(2)求∠B的度数.四、圆与直线相切专题1.(2012江苏泰州12分)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=求⊙O的半径和线段PB的长;.2.(2012广西来宾10分)如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D垂直于AC的直线交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如图AD=5,AE=4,求⊙O的直径.3.(2012广西北海10分)如图,AB是O的直径,AE交O于点E,且与O的切线CD互相垂直,垂足为D。(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8,求O的半径;4.(2012湖北恩施12分)如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;5.(2012湖北十堰10分)如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,且∠CBD=∠BAC,OD交⊙O于点E.(1)求证:BD是⊙O的切线;(2)若点E为线段OD的中点,证明:以O、A、C、E为顶点的四边形是菱形;6.(2012湖北孝感10分))如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.7.(2012广西玉林、防城港3分)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切与点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为【】A.rB.rC.2rD.r8.(2013·泰安,13,3分)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE10.(2013·聊城,24,?分)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.11.(2011山东日照,11,4分)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()12.(2011山东东营,12,3分)如图,直线与x轴、y分别相交与A、B两点,圆心P的坐标为(1,0),圆P与y轴相切与点O。若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点P′的个数是()A.2 B.3C.4 D.5五、方程在圆中运用专题1.(镇江市)如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F.若⊙O的半径为,则BF的长为 ( ) (A) (B) (C) (D)(第16题)(第16题)2.(2011浙江衢州,16,4分)木工师傅可以用角尺测量并计算出圆的半径.用角尺的较短边紧靠,并使较长边与相切于点.假设角尺的较长边足够长,角尺的顶点,较短边.若读得长为,则用含的代数式表示为.3.(2009河南)如图,在半径为、圆心角等于45°的扇形OAB内部作一个正方形CDEF,使点C在OA上,点D,E在OB上,点F在上,则阴影部分的面积为(
)。(结果保留)4.如图,两个正方形彼此相邻且内接与圆,若小正方形的面积为16,则该圆的半径为cm。5.(2011安徽芜湖,23,12分)如图,已知直线交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.6.如图,在直角坐标系中,四边形OABC为正方形,顶点A、C在在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为。7.如图,(1)多边形ABDEC是由边长为2的等边△ABC和矩形BDEC组成,⊙O过A、D、E三点,则⊙O的半径为。(2)若多边形ABDEC是由等腰△ABC和矩形BDEC组成,AB=AC=BD=2,⊙O过A、D、E三点,则⊙O的半径为。六、圆中长度计算专题1、如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm。在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离为cm。2.(2011山东威海,17,3分)如图①,将一个量角器与一张等腰直角三角形(△ABC)纸片放置成轴对称图形,∠ACB=90°,CD⊥AB,垂足为D,半圆(量角器)的圆心与点D重合,没得CE=5cm,将量角器沿DC方向平移2cm,半圆(量角器)恰与△ABC的边AC、BC相切,如图②,则AB的长为cm.(精确到0.1cm)3.(2010湖北孝感,18,3分)如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦AB与小半圆N相切于点F,且AB∥CD,AB=4,设、的长分别为x、y,线段ED的长为z,则z(x+y)=.4.(2011四川广安,6,3分)如图l圆柱的底面周长为6cm,是底面圆的直径,高=6cm,点是母线上一点且=.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()ABCP图1ABCP图1A.()cmB.5cmC.cmD.7cm5.(2011福建福州,15,4分)以数轴上的原点为圆心,为半径的扇形中,圆心角,另一个扇形是以点为圆心,为半径,圆心角,点在数轴上表示实数,如图5.如果两个扇形的圆弧部分(和)相交,那么实数的取值范围是6.(2011福建泉州,17,4分)如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC.那么剪下的扇形ABC(阴影部分)的面积为;用此剪下的扇形铁皮围成一个圆锥,该圆(第17题)锥的底面圆的半径r=(第17题)7.(2011甘肃兰州,18,4分)已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m,半圆的直径为4m,则圆心O所经过的路线长是m。(结果用π表示)OOOOOl8.(2011安徽芜湖,16,5分)如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为___________.9.(2011四川凉山州,26,5分)如图,圆柱底面半径为,高为,点分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕3圈到,求棉线最短为。10.(2011湖北荆州,14,4分)如图,长方体的底面边长分别为2cm和4cm,高为5cm,若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为cm.11.如图,从一个直径为4dm的圆形铁皮中剪出一个圆心角为60°的扇形ABC,并将剪下来的扇形围成一个圆锥,则圆锥的底面半径为_________dm.12.如图,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC,垂足是P,DH⊥BH,垂足是H,下列结论:①CH=CP;②AD=DB;③AP=BH;④DH为圆的切线.其中一定成立的是()A.①②④B.①③④C.②③④D.①②③13.(2013•许昌一模)已知:如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于D,AC于E,连接AD、BE交于点M,过点D作DF⊥AC于F,DH⊥AB于H,交BE于G,下列结论:①BD=CD;②DF是⊙O的切线;③∠DAC=∠BDH;④DG=BM.成立的个数()A.1个B.2个C.3个D.4个七、圆中动态问题专题1.(2012•聊城)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;(2)当DP为⊙O的切线时,求线段DP的长.2.(2012•兰州)如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为()A.B.1C.或1D.或3.(2012•兰州)如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是4.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则PA+PB的最小值为.5.平面直角坐标系中,⊙M的圆心坐标为(0,2),半径为1,点N在x轴的正半轴上,如果以点N为圆心,半径为4的⊙N与⊙M相切,则圆心N的坐标为.ABCABCPQO(第26题)⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.7.如图,P为正比例函数图像上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).(1)求⊙P与直线x=2相切时点P的坐标.(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.8.如图所示,圆O的直径AB=4,点P是AB延长线上的一点,过点P作圆O的切线,切点为C,连接AC.(1)若角CPA=30°,求PC的长;(2)若点P在AB的延长线上运动,角CPA的平分线交AC于点M。你认为角CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出角CMP的大小。9.如图所示,点A、B在直线MN上,AB=11cm,⊙A、⊙B的半径均为1cm,⊙A以2cm/s的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0)(1)试写出点A、B之间的距离d(cm)与时间t(s)之间的函数表达式;(2)问点A出发后多少秒两圆相切?10.等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.(1)△ABC的边与圆第一次相切时,点B运动了多少距离?(2)从△ABC的边与圆第一次相切到最后一次相切,共经过多少时间?(3)是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形各运动了多少时间;若不存在,请说明理由.P图(4)·OACDB11.如图(4)所示,直线与线段为直径的圆相切于点,并交的延长线于点,且,,点在切线上移动.当的度数最大时,则的度数为()P图(4)·OACDBA.°B.°C.°D.°O1ABCP·yx图(7)12.如图(7)所示,已知点从点(1,0)出发,以每秒1个单位长的速度沿着轴的正方向运动,经过秒后,以、为顶点作菱形,使、点都在第一象限内,且,又以(0,4)为圆心,为半径的圆恰好与所在直线相切,则.O1ABCP·yx图(7)13.如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm,半圆O以1cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧,OC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《微生物免疫学基础》课件
- 《颠覆秒培训》课件
- 二年级下册美术书课件教学课件教学
- 《组织行为沟通》课件
- 贵州省遵义市2024-2025学年九年级上学期11月期中考试化学试题
- 《水龙头专业知识》课件
- 2022年公务员多省联考《申论》真题(河北县级卷)及答案解析
- 山东省青岛市黄岛区2024-2025学年高二上学期期中考试语文试卷(含答案)
- 桑叶切碎机产业规划专项研究报告
- 石墨炭精块市场需求与消费特点分析
- 盘扣式卸料平台施工方案
- 2024年榆林交通投资建设集团有限公司招聘笔试冲刺题(带答案解析)
- 习近平总书记关于教育的重要论述研究学习通章节答案期末考试题库2023年
- 2024年高中语文会考试题及答案
- 部编 二年级语文上册 第七单元【教材解读】
- 小班古诗游子吟教案
- C函数编程20道习题汇总含其详细程序解答
- (完整)五年级上数学每日一练.doc
- 燃气管道保护方案
- 民用建筑能效测评机构条件
- 机电工程预留预埋质量检查表
评论
0/150
提交评论