专题07 全等三角形经典模型一线三等角模型(四大类型)(解析版)_第1页
专题07 全等三角形经典模型一线三等角模型(四大类型)(解析版)_第2页
专题07 全等三角形经典模型一线三等角模型(四大类型)(解析版)_第3页
专题07 全等三角形经典模型一线三等角模型(四大类型)(解析版)_第4页
专题07 全等三角形经典模型一线三等角模型(四大类型)(解析版)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题07全等三角形经典模型一线三等角模型(四大类型)重难点题型归纳【题型一:标准“K”型图】【题型二:做辅助线构造“K”型图】【题型三:“K”型图与平面直角坐标综合】【题型四:特殊“K”型图】【方法技巧】模型一一线三垂直全等模型如图一,∠D=∠BCA=∠E=90°,BC=AC。结论:Rt△BDC≌Rt△CEA模型二一线三等角全等模型如图二,∠D=∠BCA=∠E,BC=AC。结论:△BEC≌△CDA图一图二应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解【类型一:标准“K”型图】【典例1】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.【解答】解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE﹣CD=AD﹣BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE﹣AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD﹣CE=BE﹣AD.【变式1-1】如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.【解答】证明:∵∠BAC=90°,∴∠CAF+∠BAE=90°,∵BE⊥AD,CF⊥AD,∴∠CFA=∠BEA=90°,∴∠C+∠CAF=90°,∴∠C=∠BAE,∵AB=AC,∴△ABE≌△CAF(AAS)【变式1-2】在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.【解答】解:(1)在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵l∥BC,∴∠DAB=∠ABC=45°,∠CAE=∠ACB=45°,∴∠DAB=∠ABD=45°,∠EAC=∠ACE=45°,∴AD=BD,AE=CE,∵AB=AC=,∴AD=BD=AE=CE=1,∴DE=2;(2)(Ⅰ)DE=BD+CE.理由如下:在Rt△ADB中,∠ABD+∠BAD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS);∴CE=AD,BD=AE,∴DE=AE+AD=BD+CE.(Ⅱ)DE=BD﹣CE.理由如下:在Rt△ADB中,∠ABD+∠BAD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS);∴CE=AD,BD=AE,∴DE=AE﹣AD=BD﹣CE.(3)由(2)可知,∠ABD=∠CAE,DE=AE﹣AD=BD﹣CE∵∠BAC=∠ADB=90°,∴△ABD∽△FBA,∴AB:FB=BD:AB,∵CE=3,DE=1,∴AE=BD=4,∴AB=5.∴BF=.∴S△BFC=S△ABC﹣S△ABF=×52﹣×3×=.【类型二:做辅助线构造“K”型图】【典例2】如图,△ABC为等腰直角三角形,∠ABC=90°,△ABD为等腰三角形,AD=AB=BC,E为DB延长线上一点,∠BAD=2∠CAE.(1)若∠CAE=20°,求∠CBE的度数;(2)求证:∠BEC=135°;(3)若AE=a,BE=b,CE=c.则△ABC的面积为.(用含a,b,c的式子表示)【解答】(1)解:∵∠CAE=20°,∠BAD=2∠CAE,∴∠BAD=40°,∵AD=AB,∴∠D=∠DBA=70°,又∵∠ABC=90°,∴∠CBE=180°﹣70°﹣90°=20°;(2)证明:过点A作AF⊥DE于点F,过点C作CG⊥DE于点G,∴∠AFB=∠ABC=∠CGB=90°,又∵AD=BC=AB,∴∠BAC=∠ACB=45°,∠FAB=∠DAB=∠CAE,∵∠FAB+∠FBA=∠FBA+∠CBG=90°,∴∠FAB=∠CBG=∠CAE,在△BAF和△CBG中,,∴△BAF≌△CBG(AAS),∴AF=BG,BF=CG,∵∠CBG=∠CAE,∴∠AEF=∠ACB=45°,∴AF=EF=BG,BF=CG,∴BF=EG=CG,∴∠CEG=∠AEF=45°,∴∠AEC=90°,∴∠BEC=135°;(3)解:由(2)可知CG=BF,AF=EF,∴CG=BF=EF﹣BE=AF﹣BE,∵S△ABC=S△AEB+S△AEC﹣S△BEC,∴S△ABC=BE•CG=BE•(AF﹣BE)=.故答案为:.【变式2-1】已知Rt△ABC和Rt△ADE,AB=AC,AD=AE.连接BD、CE,过点A作AH⊥CE于点H,反向延长线段AH交BD于点F.(1)如图1,当AB=AD时①请直接写出BF与DF的数量关系:BF=DF(填“>”、“<”、“=”)②求证:CE=2AF(2)如图2,当AB≠AD时,上述①②结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【答案】(1)①=;②证明见解答过程;(2)成立,证明见解答过程.【解答】解:(1)∵AB=AC,AD=AE,AB=AD,∴AC=AE,∵AH⊥CE,∴∠CAH=∠EAH,∵∠BAC=∠DAE=90°,∴∠CAH+∠BAF=90°,∠EAH+∠DAF=90°,∴∠BAF=∠DAF,在△BAF和△DAF中,,∴△BAF≌△DAF(SAS),∴BF=DF,故答案为:=;②∵AC=AE,AH⊥CE,∴CH=EH=CE,∴CE=2CH,∵∠BAC=∠AHC=90°,∴∠BAF+∠CAH=90°,∠ACH+∠CAH=90°,∴∠BAF=∠ACH,∵△BAF≌△DAF,∴∠AFB=∠AFD=90°,∴∠AFB=∠CHA,在△AFB和△CHA中,,∴△AFB≌△CHA(AAS),∴AF=CH,∴CE=2AF;(2)成立,证明如下:作BM⊥AF于点M,作DN⊥AF交AF的延长线于点N,∴∠BMA=∠N=90°,∴∠BAM+∠ABM=90°,∠DAN+∠ADN=90°,∵∠BAC=∠DAE=90°,∴∠BAM+∠CAH=90°,∠DAN+∠EAH=90°,∴∠ABM=∠CAH,∠ADN=∠EAH,∵AH⊥CE,∴∠AMB=∠CHA=∠N=∠EHA=90°,在△AMB和△CHA中,,∴△AMB≌△CHA(AAS),∴MB=AH,同理可证△AND≌△EHA(AAS),∴DN=AH,∴BM=DN,在△BMF和△DNF中,,∴△BMF≌△DNF(AAS),∴BF=DF,MF=NF,∴AM=AF﹣MF,AN=AF+NF=AF+MF,∴AM+AN=AF﹣MF+AF+MF=2AF,∵△AMB≌△CHA,△AND≌△EHA,∴AM=CH,AN=EH,∴CH+EH=AM+AN=2AF,∵CE=CH+EH,∴CE=2AF,即BF=DF,CE=2AF.【变式2-2】直线l经过点A,△ABC在直线l上方,AB=AC.(1)如图1,∠BAC=90°,过点B,C作直线l的垂线,垂足分别为D、E.求证:△ABD≌△CAE;(2)如图2,D,A,E三点在直线l上,若∠BAC=∠BDA=∠AEC=α(α为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明;(3)如图3,∠BAC=90°过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作∠DAE=90°,使得AE=AD,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.【答案】(1)证明过程见解析;(2)DE=BD+CE;证明过程见解析;(3)证明过程见解析.【解答】(1)证明:∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=90°,∵∠BAC=90°,∴∠CAE+∠DAB=90°,∴∠ABD=∠CAE,在△ABD与△CAE中,,∴△ABD≌△CAE(AAS);(2)解:猜想:DE=BD+CE,∵∠BDA=∠BAC=α,∴∠ABD+∠DAB=180°﹣∠BDA=180°﹣α,∠CAE+∠DAB=180°﹣∠BAC=180°﹣α,∴∠ABD=∠CAE,在△ABD与△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,DA=EC,∴DE=AE+DA=BD+CE;(3)证明:分别过点C、E作CM⊥l,EN⊥l,由(1)可知△ABF≌△CAM,△ADF≌△EAN,∴AF=CM,AF=EN,∴CM=EN,∵CM⊥l,EN⊥l,∴∠CMG=∠ENG=90°,在△CMG与△ENG中,,∴△CMG≌△ENG(AAS),∴CG=EG,∴G为CE的中点.【类型三:“K”型图与平面直角坐标综合】【典例3】如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.【解答】解:(1)如图1中,过点C作CE⊥y轴于E,则∠CEB=∠AOB.∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠BAO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵A(﹣1,0),B(0,2),∴AO=BE=1,OB=CE=2,∴OE=1+2=3,∴C(﹣2,3),故答案为:(﹣2,3);(2)动点A在运动的过程中,c+d的值不变.理由:过点C作CE⊥y轴于E,则∠CEA=∠AOB,∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵B(﹣1,0),A(0,a),∴BO=AE=1,AO=CE=a,∴OE=1+a,∴C(﹣a,1+a),又∵点C的坐标为(c,d),∴c+d=﹣a+1+a=1,即c+d的值不变.【变式3-1】如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(0,3),把线段BA绕点B逆时针旋转90°后得到线段BC,则点C的坐标是()A.(3,4) B.(4,3) C.(4,7) D.(3,7)【答案】D【解答】解:过点C作CD⊥y轴,垂足为D,∴∠CDB=90°,∴∠CBD+∠DCB=180°﹣∠CDB=90°,∵点A的坐标是(4,0),点B的坐标是(0,3),∴OA=4,OB=3,由旋转得:CB=BA,∠CBA=90°,∴∠CBD+∠ABO=180°﹣∠ABC=90°,∴∠ABO=∠DCB,∵∠CDB=∠AOB=90°,∴△BOA≌△CDB(AAS),∴CD=BO=3,DB=OA=4,∴DO=DB+OB=4+3=7,∴点C的坐标是(3,7),故选:D.【变式3-4】问题背景:(1)如图①,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,请直接写出BD、CE、DE的数量关系.拓展延伸:(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC请写出DE、BD、CE三条线段的数量关系,并说明理由.实际应用:(3)如图③,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求B点的坐标.【答案】(1)BD+CE=DE;(2)BD+CE=DE,理由见解析;(3)(1,4).【解答】解:(1)BD+CE=DE,理由如下:∵BD⊥AD,∴∠ABD+∠BAD=90°,∵∠BAC=90°,∴∠CAE+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴BD+CE=AE+AD=DE;(2)BD+CE=DE,理由如下:在△ABD中,∠ABD=180°﹣∠ADB﹣∠BAD,∵∠CAE=180°﹣∠BAC﹣∠BAD,∠BDA=∠BAC,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴BD+CE=AE+AD=DE;(3)如图③,过A作AE⊥x轴于点E,过BBF⊥x轴于点F,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,OE=6,AE=3,∴CE=OE﹣OC=6﹣2=4,由(1)可知,△AEC≌△CFB(AAS),∴CF=AE=3,BF=CE=4,∴OF=CF﹣OC=3﹣2=1,∴点B的坐标为(1,4).【变式3-5】(1)如图1,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线DE,AD⊥DE于点D,BE⊥DE于点E,求证:△ADC≌△CEB;(2)如图2,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线CE,AD⊥CE于点D,BE⊥CE于点E,AD=2.5cm,DE=1.7cm,求BE的长;(3)如图3,在平面直角坐标系中,A(﹣1,0),C(1,3),△ABC为等腰直角三角形,∠ACB=90°,AC=BC,求点B坐标.【答案】(1)证明见解析;(2)0.8cm;(3)(4,1).【解答】(1)证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠ECB=90°,∠DAC+∠ACD=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:∵BE⊥CE,AD⊥CE,∴∠ADC=∠CEB=90°,∴∠CBE+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACD=90°,∴∠ACD=∠CBE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=CE=2.5cm,CD=BE,∴BE=CD=CE﹣DE=2.5﹣1.7=0.8(cm),即BE的长为0.8cm;(3)解:如图3,过点C作直线l∥x轴,交y轴于点G,过A作AE⊥l于点E,过B作BF⊥l于点F,交x轴于点H,则∠AEC=∠CFB=∠ACB=90°,∵A(﹣1,0),C(1,3),∴EG=OA=1,CG=1,FH=AE=OG=3,∴CE=EG+CG=2,∵∠ACE+∠EAC=90°,∠ACE+∠FCB=90°,∴∠EAC=∠FCB,在△AEC和△CFB中,,∴△AEC≌△CFB(AAS),∴AE=CF=3,BF=CE=2,∴FG=CG+CF=1+3=4,BH=FH﹣BF=3﹣2=1,∴B点坐标为(4,1).【变式3-6】在直角坐标平面内,点A(3,0),点B是第二象限内任意一点(如图所示).线段AB绕点A旋转90°后的图形为AC,连接BC.(1)当线段AB绕点A顺时针旋转时,①如果点B的坐标为(﹣1,2),过点B作BH⊥OA,垂足为点H,直接写出线段AH的长;②如果点B的横坐标为a,且BC∥OA,求点B的纵坐标;(用含a的代数式表示)(2)设点B的坐标为(m,n),直接写出点C的坐标.(用含m、n的代数式表示)【答案】(1)①AH=4;②点B的纵坐标为3﹣a;(2)点C坐标为(3+n,3﹣m)或(3﹣n,m﹣3).【解答】解:(1)①如图,过点B作BH⊥OA,垂足为点H,,∵B(﹣1,2),A(3,0),∴OH=1,∴AH=4.②如图,过点A作AD⊥BC交于点D,,∵BC∥OA,∠BAC=90°,AB=AC,∴BD=AD=DC,∵B的横坐标为a,∴BD=3﹣a,∴AD=3﹣a,∴点B的纵坐标为3﹣a.(2)①当顺时针转动时,如图,点C落在第一象限,过点B作BE⊥OA交于点E,过点C作CF⊥OA交于点F,,∵∠BAC=90°,∴∠BAE+∠CAF=90°,在Rt△BAE中,∠BAE+∠ABE=90°,∴∠CAF=∠ABE,在△ABE和△CAF中,,∴△ABE≌△CAF(AAS),∴AF=BE=n,CF=AE=3﹣m,∴OF=3+n,∴C(3+n,3﹣m).②当逆时针转动时,如图,此时点C落在第三象限,过点B作BE⊥OA交于点E,过点C作CF⊥OA交于点F,,∵∠BAC=90°,∴∠BAE+∠CAF=90°,在Rt△BAE中,∠BAE+∠ABE=90°,∴∠CAF=∠ABE,在△ABE和△CAF中,,∴△ABE≌△CAF(AAS),∴CF=AE=3﹣m,AF=BE=n,∴OF=3﹣n,∵点C在第三象限,∴C(3﹣n,m﹣3).综上,点C坐标为(3+n,3﹣m)或(3﹣n,m﹣3).【变式3-7】如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,PA与CQ有何位置和数量关系,猜想并证明;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.【答案】(1)(1,﹣4);(2)CQ=AP,CQ⊥AP.证明见解析过程;(3)135°,(1,0).【解答】解:(1)如图1,过C作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH(AAS),∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)CQ=AP,CQ⊥AP.证明:如图2,延长CQ交x轴于D,交AB于E,∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC(SAS),∴PA=CQ,∠BAP=∠BCQ,又∵∠AED=∠CEB,∴∠ADE=∠CBE=90°,即CD⊥AD,∴CQ⊥AP;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=180°﹣135°=45°,∴OP=OB=1,∴P点坐标为(1,0).【变式3-8】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一,若点B坐标为(0,﹣3),连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二,连接CD,与y轴交于点E,试求BE长度.【解答】(1)①证明:∵△OBC和△ABD是等腰直角三角形,∴OB=CB,BD=AB,∠ABD=∠OBC=90°,∴∠ABD+ABO=∠OBC+∠A∠O,∴∠OBD=∠CBA,∴△OBD≌△CBA(SAS),∴AC=OD;②如图一、∵A(4,0),B(0,﹣3),∴OA=4,OB=3,过点D作DF⊥y轴于F,∴∠BOA=∠DFB=90°,∴∠ABO+∠OAB=90°,∵∠ABD=90°,∴∠ABO+∠FBD=90°,∴∠OAB=∠FBD,∵AB=BD,∴△AOB≌△BFD(AAS),∴DF=OB=3,BF=OA=4,∴OF=OB+BF=7,∴D(3,﹣7);(2)如图二、过点D作DF⊥y轴于F,则∠DFB=90°=∠CBF,同(1)②的方法得,△AOB≌△BFD(AAS),∴DF=OB,BF=OA=4,∵OB=BC,∴BC=DF,∵∠DEF=∠CEB,∴△DEF≌△CEB(AAS),∴BE=EF,∴BF=BE+EF=2BE=4,∴BE=2.【类型四:特殊“K”型图】【典例4】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;(3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.【解答】解:(1)DE=BD+CE,理由如下:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(2)结论DE=BD+CE成立,理由如下:∵∠BAD+∠CAE=180°﹣∠BAC,∠BAD+∠ABD=180°﹣∠ADB,∠ADB=∠BAC,∴∠ABD=∠CAE,在△BAD和△ACE中,,∴△BAD≌△ACE(AAS),∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE;(3)△DFE为等边三角形,理由如下:由(2)得,△BAD≌△ACE,∴BD=AE,∠ABD=∠CAE,∴∠ABD+∠FBA=∠CAE+FAC,即∠FBD=∠FAE,在△FBD和△FAE中,,∴△FBD≌△FAE(SAS),∴FD=FE,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DFE为等边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论