版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市河东区2024年数学八年级下册期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知,则下列不等式中不正确的是()A. B. C. D.2.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC3.如图,是某超市一楼与二楼之间的阶梯式电梯示意图,其中、分别表示一楼、二楼地面的水平线,,的长为,则乘电梯从点到点上升的高度是()A. B. C. D.4.在ABCD中,∠A:∠B:∠C:∠D的度数比值可能是()A.1:2:3:4 B.1:2:2:1 C.1:1:2:2 D.2:1:2:15.已知a=2-2,b=A.a>b>c B.b>a>c C.c>a>b D.b>c>a6.已知函数y1=和y2=ax+5的图象相交于A(1,n),B(n,1)两点.当y1>y2时,x的取值范围是()A.x≠1 B.0<x<1 C.1<x<4 D.0<x<1或x>47.若一个多边形的内角和是外角和的5倍,则这个多边形的边数是()A.12 B.10 C.8 D.118.函数中自变量x的取值范围是()A. B. C. D.9.下列四组线段中,可以构成直角三角形的是()A.3,4,5 B.1,2,3 C.4,5,610.直角三角形的两边为9和40,则第三边长为()A.50 B.41 C.31 D.以上答案都不对二、填空题(每小题3分,共24分)11.如图,在正方形ABCD中,AB=8厘米,如果动点P在线段AB上以2厘米/秒的速度由A点向B点运动,同时动点Q在以1厘米/秒的速度线段BC上由C点向B点运动,当点P到达B点时整个运动过程停止.设运动时间为t秒,当AQ⊥DP时,t的值为_____秒.12.分解因式:x2y﹣y3=_____.13.如图,菱形ABCD的两条对角线长分别为6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点则PM+PN的最小值是_14.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠的依据是______________________________________.15.如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为_____.16.不等式的正整数解是______.17.二次根式中,x的取值范围是________.18.某种手机每部售价为元,如果每月售价的平均降低率为,那么两个月后,这种手机每部的售价是____________元.(用含,的代数式表示)三、解答题(共66分)19.(10分)如图,在□ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.20.(6分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)21.(6分)甲乙两个工程队分别同时开挖两条600米长的管道,所挖管道长度(米)与挖掘时间(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前1天完成任务;④当时,甲乙两队所挖管道长度相同,不正确的个数有()A.4个 B.3个 C.2个 D.1个22.(8分)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?23.(8分)(1);(2).24.(8分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)25.(10分)近几年杭州市推出了“微公交”,“微公交”是国内首创的纯电动汽车租赁服务.它作为一种绿色出行方式,对缓解交通堵塞和停车困难,改善城市大气环境,都可以起到积极作用.据了解某租赁点拥有“微公交”辆.据统计,当每辆车的年租金为千元时可全部租出;每辆车的年租金每增加千元,未租出的车将增加辆.(1)当每辆车的年租金定为千元时,能租出多少辆?(2)当每辆车的年租金增加多少千元时,租赁公司的年收益(不计车辆维护等其他费用)可达到千元?26.(10分)某公司招聘一名员工,现有甲、乙两人竞聘,公司聘请了3位专家和4位群众代表组成评审组,评审组对两人竟聘演讲进行现场打分,记分采用100分制,其得分如下表:评委(序号)1234567甲(得分)89949387959287乙(得分)87899195949689(1)甲、乙两位竞聘者得分的中位数分别是多少(2)计算甲、乙两位应聘者平均得分,从平均得分看应该录用谁(结果保留一位小数)(3)现知道1、2、3号评委为专家评委,4、5、6、7号评委为群众评委,如果对专家评委组与群众评委组的平均分数分别赋子适当的权,那么对专家评委组赋的权至少为多少时,甲的平均得分比乙的平均得分多0.5分及以上
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据不等式的性质逐项分析即可.【详解】A.∵,∴,故正确;B.∵,∴,故正确;C.∵,∴,故正确;D.∵,∴,故不正确;故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.2、D【解析】
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选D.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.3、C【解析】
过C作CM⊥AB于M,求出∠CBM=30°,根据BC=10m,利用三角函数的知识解直角三角形即可.【详解】解:过C作CM⊥AB于M,
∵∠ABC=150°,
∴∠CBM=180°-150°=30°,
在Rt△CBM中,
∵BC=10m,∠CBM=30°,
∴=sin∠CBM=sin30°=,
∴CM=BC=5m,
即从点B到点C上升的高度h是5m.
故选C.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡角建立直角三角形,利用三角函数解直角三角形.4、D【解析】
根据平行四边形的两组对角分别相等判定即可【详解】解:根据平行四边形的两组对角分别相等,可知D正确.
故选:D.【点睛】此题主要考查了平行四边形的性质,熟知平行四边形的两组对角分别相等这一性质是解题的关键.5、B【解析】
先根据幂的运算法则进行计算,再比较实数的大小即可.【详解】a=2b=π-2c=-11>1故选:B.【点睛】此题主要考查幂的运算,准确进行计算是解题的关键.6、D【解析】
根据对称性确定直线AB的解析式,求出A、B两点坐标即可解决问题.【详解】解:如图:∵A、B关于直线y=x对称,∴AB⊥直线y=x,∴直线AB的解析式为y=-x+5,∴A(1,4),B(4,1),当y1>y2时,x的取值范围是0<x<1或x>4,故选:D.【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.7、A【解析】
根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=1.故选:A.【点睛】本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.8、B【解析】
根据二次根式中的被开方数非负数的性质进行计算,即可得到答案.【详解】由二次根式中的被开方数非负数的性质可得,则,故选择B.【点睛】本题考查函数自变量的取值范围,解题的关键是知道二次根式中的被开方数非负数.9、A【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.32+42=52,能构成直角三角形,故符合题意;B.12+(2)2≠32,不能构成直角三角形,故不符合题意;C.42+52≠62,不能构成直角三角形,故不符合题意;D.12+12≠22,不能构成直角三角形,故不符合题意。故选:A.【点睛】此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算.10、D【解析】
考虑两种情况:9和40都是直角边或40是斜边.根据勾股定理进行求解.【详解】①当9和40都是直角边时,则第三边是92+②当40是斜边时,则第三边是402-92则第三边长为41或731故选D.【点睛】此题考查勾股定理,解题关键在于分情况讨论.二、填空题(每小题3分,共24分)11、2【解析】
先证△ADP≌△BAQ,得到AP=BQ,然后用t表示出AP与BQ,列出方程解出t即可.【详解】因为AQ⊥PD,所以∠BAQ+∠APD=90°又因为正方形性质可到∠APD+∠ADP=90°,∠PAD=∠B=90°,AB=AD,所以得到∠BAQ=∠ADP又因为∠PAD=∠B=90°,AB=AD所以△ADP≌△BAQ,得到AP=BQAP=2t,QC=t,BC=8-t所以2t=8-2t,解得t=2s故填2【点睛】本题考查全等三角形的性质与判定,解题关键在于证出三角形全等,得到对应边相等列出方程.12、y(x+y)(x﹣y).【解析】试题分析:先提取公因式y,再利用平方差公式进行二次分解.解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为y(x+y)(x﹣y).13、1【解析】试题分析:要求PM+PN的最小值,PM,PN不能直接求,可考虑通过作辅助线转化PN,PM的值,从而找出其最小值求解.如图:作ME⊥AC交AD于E,连接EN,则EN就是PM+PN的最小值,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABNE是平行四边形,而由已知可得AB=1∴AE=BN,∵四边形ABCD是菱形,∴AE∥BN,∴四边形AENB为平行四边形,∴EN=AB=1,∴PM+PN的最小值为1.考点:轴对称—最短路径问题点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.综合运用这些知识是解决本题的关键14、对角线互相垂直平分的四边形是菱形【解析】
解:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.所以小明这样折叠的依据是:对角线互相垂直平分的四边形是菱形.15、1【解析】
先求出每次延长后的面积,再发现规律即可求解.【详解】解:最初边长为1,面积1,延长一次为,面积5,再延长为51=5,面积52=25,下一次延长为5,面积53=125,以此类推,当N=4时,正方形A4B4C4D4的面积为:54=1.故答案为:1.【点睛】此题主要考查勾股定理的应用,解题的关键是根据题意找到规律进行求解.16、1和2.【解析】
先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【详解】去分母得,2(x+4)>3(3x−1)-6,去括号得,2x+8>9x-3-6,移项得,2x−9x>-3-6−8,合并同类项得,−7x>−17,把x的系数化为1得,x<.故它的正整数解为:1和2.【点睛】此题考查解一元一次不等式,一元一次不等式的整数解,解题关键在于掌握运算法则17、【解析】
根据二次根式有意义的条件进行求解即可得.【详解】根据题意,得,解得,,故答案为:.【点睛】本题考查了二次根式有意义的条件,熟练掌握“式子叫二次根式、二次根式中的被开方数必须是非负数”是解题的关键.18、(1-x)2【解析】
根据题意即可列出代数式.【详解】∵某种手机每部售价为元,如果每月售价的平均降低率为,则一个月后的售价为(1-x)故两个月后的售价为(1-x)2【点睛】此题主要考查列代数式,解题的关键是根据题意找到数量关系.三、解答题(共66分)19、(1)见解析;(2)时,四边形EGCF是矩形,理由见解析.【解析】
(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,(2)当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.20、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.21、D【解析】
根据函数图像中数据一次计算出各小题,从而可以解答本题.【详解】①项,根据图象可得,甲队6天挖了600米,故甲队每天挖:600÷6=100(米),故①项正确.②项,根据图象可知,乙队前两天共挖了300米,到第6天挖了500米,所以在6-2=4天内一共挖了:200(米),故开挖两天后每天挖:200÷4=50(米),故②项正确.③项,根据图象可得,甲队完成任务时间是6天,乙队完成任务时间是:2+300÷50=8(天),故甲队比乙队提前8-6=2(天)完成任务,故③项错误;④项,根据①,当x=4时,甲队挖了:400(米),根据②,乙队挖了:300+2×50=400(米),所以甲、乙两队所挖管道长度相同,故④项正确.综上所述,不正确的有③,共1个.故本题正确答案为D.【点睛】本题考查的是函数图像,熟练掌握函数图像是解题的关键.22、(1)4h;(2)y=120x﹣40(1≤x≤3);(3)小刚一家出发2.5小时时离目的地120km远.【解析】试题分析:(1)观察图形即可得出结论;(2)设AB段图象的函数表达式为y=kx+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2.5代入AB段图象的函数表达式,求出对应的y值,进一步即可求解.试题解析:(1)从小刚家到该景区乘车一共用了4h时间;(2)设AB段图象的函数表达式为y=kx+b.∵A(1,80),B(3,320)在AB上,∴,解得.∴y=120x﹣40(1≤x≤3);(3)当x=2.5时,y=120×2.5﹣40=260,380﹣260=120(km).故小刚一家出发2.5小时时离目的地120km远.考点:一次函数的应用.23、(1);(2).【解析】
(1)先利用平方差公式化简后面两个括号,再根据二次根式的运算法则进行计算即可得出答案;(2)先利用平方差公式和完全平方公式进行展开,再根据二次根式的运算法则进行计算即可得出答案.【详解】解:(1)原式=(2)原式=【点睛】本题考查的是二次根式的运算,难度适中,需要熟练掌握二次根式的运算法则.24、(1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC.【解析】试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;(2)仍成立.证明:如图2,连接AC、BD.由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.在△MOE和△NOF中,∵∠OEM=∠OFN,∠MO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台理工学院《物流管理》2022-2023学年第一学期期末试卷
- 烟台理工学院《韩语实践》2022-2023学年第一学期期末试卷
- 宜宾学院《数据结构》2021-2022学年第一学期期末试卷
- 结合传统文化开展教育活动计划
- 徐州工程学院《舞台服装设计》2021-2022学年第一学期期末试卷
- 徐州工程学院《空间形式与组合设计》2021-2022学年第一学期期末试卷
- 培养健康饮食习惯的方案计划
- 木质家具运输合同三篇
- 课堂练习与家庭作业安排计划
- 酒店前台服务培训
- 辽宁省名校联盟2024年高三12月份联合考试 语文试卷(含答案解析)
- 2024-2025学年统编版道德与法治八年级上册 10.1 关心国家发展 课件(48张)
- 《垂体瘤规范化诊治》课件
- Module 9 Unit 2 She was very happy (说课稿)-2024-2025学年外研版(一起)英语五年级上册
- 袁隆平简介大学课件
- 浙江省9+1高中联盟2024-2025学年高三上学期11月期中考试数学试题
- 七上语文期末考试复习计划表
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- GB 18613-2020 电动机能效限定值及能效等级
- 起重机传动装置的设计
评论
0/150
提交评论