版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年山东省青岛李沧、平度、西海岸、胶州八年级下册数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,ΔABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的长为()A.0.72 B.1.125 C.2 D.不能确定2.如图在4×5的网格中,每个小正方形的边长都是1个单位长度,定义:以网格中小正方形顶点为顶点的正方形叫作格点正方形,图中包含“△”的格点正方形有()个.A.11 B.15 C.16 D.173.如图,正方形OABC的兩辺OA、OC分別在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(1,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2)或(-2,0)4.若mx-4-1-xA.3 B.2 C.﹣3 D.﹣25.如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2)6.如图,在△ABC中,∠C=90°,点E是斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=5:2,则∠BAC=()A.60° B.70° C.80° D.90°7.如图,在长为31m,宽为10m的矩形空地上修建同样宽的道路(图中阴影部分),剩余的空地上种植草坪,使草坪的面积为540m1.设道路的宽为xm,根据题意,下面列出的方程正确的是()A.31x+10x﹣1x1=540B.31x+10x=31×10﹣540C.(31﹣x)(10﹣x)=540D.(31﹣x)(10﹣x)=31×10﹣5408.下列方程是关于的一元二次方程的是()A. B. C. D.9.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12124下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4810.一个直角三角形的两边长分别为5和12,则第三边的长为()A.13 B.14 C.119 D.13或11911.如图,在矩形ABED中,AB=4,BE=EC=2,动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()A. B.C. D.12.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等 B.两条对角线相等C.四个内角都是直角 D.每一条对角线平分一组对角二、填空题(每题4分,共24分)13.如图,四边形ABCD、DEFG都是正方形,AB与CG交于点下列结论:;;;;其中正确的有______;14.如图,矩形ABCD的对角线AC,BD的交点为O,点E为BC边的中点,,如果OE=2,那么对角线BD的长为______.15.如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为_____.16.如下图,将边长为9cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为6cm,则MN的长为_____cm.17.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.18.如图,直线y=kx+3经过点A(1,2),则它与x轴的交点B的坐标为____.三、解答题(共78分)19.(8分)如图,在平行四边形ABCD中,点F在AD上,且AF=AB,AE平分∠BAD交BC于点E,连接EF,BF,与AE交于点O.(1)求证:四边形ABEF是菱形;(2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.20.(8分)已知:如图,直线l是一次函数的图象求:这个函数的解析式;当时,y的值.21.(8分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若点E到CD的距离为2,CD=3,试求出矩形ABCD的面积.22.(10分)已知x=2+,求代数式的值.23.(10分)已知正方形ABCD中,E为对角线BD上一点,过点E作EF⊥BD交BC于点F,连接DF,G为DF的中点,连接EG,(1)如图1,求证:EG=CG;(2)将图1中的ΔBEF绕点B逆时针旋转45°,如图2,取DF的中点G,连接EG,CG.问((3)将图1中的ΔBEF绕点B逆时计旋转任意角度,如图3,取DF的中点G,连接EG,CG.问(24.(10分)某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如下表所示:面试笔试成绩评委1评委2评委392889086(1)请计算小王面试平均成绩;(2)如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.25.(12分)对于实数、,定义一种新运算“※”为:.例如:,.(1)化简:.(2)若关于的方程有两个相等的实数根,求实数的值.26.已知:如图1,Rt△ABC中,∠BAC=90°,点D是线段AC的中点,连接BD并延长至点E,使BE=2BD.连接AE,CE.(1)求证:四边形ABCE是平行四边形;(2)如图2所示,将三角板顶点M放在AE边上,两条直角边分别过点B和点C,若∠MEC=∠EMC,BM交AC于点N.求证:△ABN≌△MCN.
参考答案一、选择题(每题4分,共48分)1、A【解析】
先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.【详解】∵AB=1.5,BC=0.9,AC=1.2,∴AB2=∴AB∴∠ACB=90°,∵CD是AB边上的高,∴S1.5CD=1.2×0.9,CD=0.72.故选A.【点睛】该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题,解题的方法是运用勾股定理首先证明△ABC为直角三角形,解题的关键是灵活运用三角形的面积公式来解答.2、C【解析】
分七种情况讨论,即可.【详解】解:图中包含“△”的格点正方形为:边长为1的正方形有:1个,边长为2的正方形有:4个,边长为3的正方形有:4个,边长为的正方形有:2个,边长为4的正方形有:2个边长为2的正方形有:1个边长为的正方形有:2个所以图中包含“△”的格点正方形的个数为:1+4+4+2+2+1+2=1.故选:C.【点睛】本题考查的是图像,熟练掌握正方形的性质是解题的关键.3、C【解析】
根据题意,分顺时针旋转和逆时针旋转两种情况,求出点D′到x轴、y轴的距离,即可判断出旋转后点D的对应点D′的坐标是多少即可.【详解】解:因为点D(5,3)在边AB上,
所以AB=BC=5,BD=5-3=2;
(1)若把△CDB顺时针旋转90°,
则点D′在x轴上,OD′=2,
所以D′(-2,0);
(2)若把△CDB逆时针旋转90°,
则点D′到x轴的距离为10,到y轴的距离为2,
所以D′(2,10),
综上,旋转后点D的对应点D′的坐标为(-2,0)或(2,10).
故选C.【点睛】本题考查坐标与图形变化-旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.4、A【解析】
先把分式方程化为整式方程得到m+1﹣x=0,再利用分母为0得到方程的增根为4,然后把x=4代入m+1﹣x=0中求出m即可.【详解】去分母得:m+1﹣x=0,方程的增根为4,把x=4代入m+1﹣x=0得:m+1﹣4=0,解得:m=1.故选A.【点睛】本题考查了分式方程的增根:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.5、A【解析】
依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=-1,可得G(-1,2).【详解】如图,过点A作AH⊥x轴于H,AG与y轴交于点M,∵▱AOBC的顶点O(0,0),A(-1,2),∴AH=2,HO=1,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴MG=-1,∴G(-1,2),故选A.【点睛】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.6、B【解析】点E是斜边AB的中点,ED⊥AB,∠B=∠DAB,∠DAB=2x,故2x+2x+5x=90°,故x=10°,∠BAC=70°.故选B.7、C【解析】
把道路进行平移,可得草坪面积=长为31﹣x,宽为10﹣x的面积,把相关数值代入即可求解.【详解】解:把道路进行平移,可得草坪面积为一个矩形,长为31﹣x,宽为10﹣x,∴可列方程为:(31﹣x)(10﹣x)=2.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,是正确列出一元二次方程的关键.8、C【解析】
根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.【详解】A.中含有4个未知数,所以错误;B.中含有分式,所以错误;C.化简得到,符合一元二次方程的定义,故正确;D.含有两个未知数,所以错误.故选择C.【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程必须满足四个条件.9、A【解析】
结合表格根据众数、平均数、中位数的概念求解即可.【详解】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为49;平均数为48.6,方差为[(46-48.6)2+2×(47-48.6)2+(48-48.6)2+2×(49-48.6)2+4×(50-48.6)2]≠50;∴选项A正确,B、C、D错误故选:A【点睛】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.10、D【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】当12和5均为直角边时,第三边=122+当12为斜边,5为直角边,则第三边=122-5故第三边的长为13或119.故选D.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.11、D【解析】
分别求出点P在DE、AD、AB上运动时,S与t的函数关系式,继而根据函数图象的方向即可得出答案.【详解】解:根据题意得:当点P在ED上运动时,S=BC•PE=2t(0≤t≤4);当点P在DA上运动时,此时S=8(4<t<6);当点P在线段AB上运动时,S=BC(AB+AD+DE﹣t)=20﹣2t(6≤t≤10);结合选项所给的函数图象,可得D选项符合题意.故选:D.【点睛】本题考查了动点问题的函数图象,解答该类问题也可以不把函数图象的解析式求出来,利用排除法进行解答.12、D【解析】
菱形具有平行四边形的全部性质,故分析ABCD选项,添加一个条件证明平行四边形为菱形即为菱形具有而平行四边形不具有的性质,即可解题.【详解】解:平行四边形的对角线互相平分,对边相等,
且菱形具有平行四边形的全部性质,
故A、B、C选项错误;
对角线平分一组对角的平行四边形是菱形,故D选项正确.
故选D.【点睛】本题考查了平行四边形的邻角互补、对角线互相平分,对角相等的性质,菱形每条对角线平分一组对边的性质,本题中熟练掌握菱形、平行四边形的性质是解题的关键.二、填空题(每题4分,共24分)13、
【解析】
根据正方形的性质可得,,,然后求出,再利用“边角边”证明和全等,根据全等三角形对应边相等可得,判定正确;根据全等三角形对应角相等可得,再求出,然后求出,判定正确;根据直角三角形斜边上的中线等于斜边的一半可得,判定正确;求出点D、E、G、M四点共圆,再根据同弧所对的圆周角相等可得,判定正确;得出,判定GE错误.【详解】四边形ABCD、DEFG都是正方形,,,,,即,在和中,,≌,,故正确;,,,,故正确;是正方形DEFG的对角线的交点,,,故正确;,点D、E、G、M四点共圆,,故正确;,,不成立,故错误;综上所述,正确的有.故答案为.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,以及四点共圆,熟练掌握各性质是解题的关键.14、1【解析】
由30°角直角三角形的性质求得,然后根据矩形的两条对角线相等且平分来求的长度.【详解】解:在矩形中,对角线,的交点为,,,.又∵点为边的中点,,,,,,.故答案为:1.【点睛】本题主要考查对矩形的性质,三角形的中位线定理,能根据矩形的性质和30°角所对的直角边等于斜边的一半求出的长是解此题的关键.题型较好,难度适中.15、【解析】
先根据折叠的性质得∠EAB=∠EAN,AN=AB=8,再根据正方形的性质得AB∥CD,则∠EAB=∠F,所以∠EAN=∠F,得到MA=MF,设CM=x,则AM=MF=4+x,DM=DC-MC=8-x,在Rt△ADM中,根据勾股定理,解得x,然后利用MN=AM-AN求解即可.【详解】解:∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=8,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=4,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=,所以,AM=4+4=8,所以,NM=AM﹣AN=8﹣8=.故答案为:.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,对应边和对应角相等,也考查了正方形的性质和勾股定理,熟练掌握正方形的性质及折叠的性质并能正确运用勾股定理是解题的关键.16、3【解析】
根据图形折叠前后图形不发生大小变化得出∠MWE=∠AWM=90°,进而得出∠DAE=∠DAE,再证明△NFM≌△ADE,然后利用勾股定理的知识求出MN的长.【详解】解:作NF⊥AD,垂足为F,连接AE,NE,∵将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN,
∴∠D=∠AHM=90°,∠DAE=∠DAE,
∴△AHM∽△ADE,
∴∠AMN=∠AED,
在△NFM和△ADE中
∵,
∴△NFM≌△ADE(AAS),
∴FM=DE=CD-CE=3cm,
又∵在Rt△MNF中,FN=9cm,
∴根据勾股定理得:MN==3(cm).
故答案为3.【点睛】本题考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.17、0.7【解析】
用通话时间不足10分钟的通话次数除以通话的总次数即可得.【详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.18、(3,0)【解析】
把点代入直线解析式,求出直线的表达式子,再根据点是直线与轴的交点,把代入直线表达式即可求解.【详解】解:把A(1,2)代入可得:解得:∴∴把代入可得:解得:∴B(3,0)故答案为(3,0)【点睛】本题主要考查了一次函数与坐标轴交点问题,通过一次函数所经过的点求一次函数的解析式是解题的关键.三、解答题(共78分)19、(1)见解析;(2)AE=10,四边形ABEF的面积=50.【解析】
(1)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由AF=AB得出BE=AF,即可得出结论.(2)根据菱形的性质可得AB=10,AE⊥BF,BO=FB=5,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.菱形的面积=对角线乘积的一半.【详解】(1)证明∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,且AF=AB,∴BE=AF,又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形;(2)∵四边形ABEF为菱形,且周长为40,BF=10∴AB=BE=EF=AF=10,AE⊥BF,BO=FB=5,AE=2AO,在Rt△AOB中,AO=,∴AE=2AO=10.∴四边形ABEF的面积=BF•AE=×10×10=50【点睛】本题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.20、(1).(2)3.【解析】
由一次函数的图象经过,两点,代入解析式可得,解得,,因此一次函数关系式为:,根据一次函数关系式,把,代入可得:.【详解】解:一次函数的图象经过,两点,依题意得,解得,,,当时,.【点睛】本题主要考查待定系数法求一次函数关系式,解决本题的关键是要熟练掌握待定系数法求一次函数关系式.21、(1)见解析;(2)矩形ABCD的面积=1.【解析】
(1)根据对边平行得四边形OCED是平行四边形,由原矩形对角线相等且互相平分得OC=OD,所以四边形OCED是菱形;(2)根据三角形面积公式和矩形的面积等于4个△DEC的面积解答即可.【详解】(1)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OD=BD,OC=AC,∴OC=OD,∴▱OCED是菱形;(2)∵点E到CD的距离为2,CD=3,∴△DEC的面积=,∴矩形ABCD的面积=4×3=1.【点睛】本题考查了矩形的性质,是常考题型,难度不大;需要熟练掌握矩形、菱形的边、角、对角线的关系,不能互相混淆.22、【解析】
把代入代数式,再根据平方差公式、完全平方公式计算即可求解.【详解】解:【点睛】本题考查了二次根式的化简求值,解题的关键是掌握平方差公式、完全平方公式.23、(1)见解析;(2)见解析;(3)见解析.【解析】
(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
(3)结论依然成立.过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出结论.【详解】(1)在RtΔFCD中,G为DF∴CG=1同理,在RtΔDEF中,EG=∴EG=CG.(2)如图②,(1)中结论仍然成立,即EG=CG.
理由:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
∴∠AMG=∠DMG=90°.
∵四边形ABCD是正方形,
∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.
在△DAG和△DCG中,
AD=CD∠ADG=∠CDGDG=DG,
∴△DAG≌△DCG(SAS),
∴AG=CG.
∵G为DF的中点,
∴GD=GF.
∵EF⊥BE,
∴∠BEF=90°,
∴∠BEF=∠BAD,
∴AD∥EF,
∴∠N=∠DMG=90°.∠DGM=∠FGNFG=DG∠MDG=∠NFG,
∴△DMG≌△FNG(ASA),
∴MG=NG.
∵∠DA∠AMG=∠N=90°,
∴四边形AENM是矩形,
∴AM=EN,
在△AMG和△ENG中,
AM=EN∠AMG=∠ENGMG=NG,
∴△AMG≌△ENG(SAS),
∴AG=EG,
∴EG=CG;
(3)如图③,(1)中的结论仍然成立.
理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台理工学院《物流管理》2022-2023学年第一学期期末试卷
- 烟台理工学院《韩语实践》2022-2023学年第一学期期末试卷
- 宜宾学院《数据结构》2021-2022学年第一学期期末试卷
- 结合传统文化开展教育活动计划
- 徐州工程学院《舞台服装设计》2021-2022学年第一学期期末试卷
- 徐州工程学院《空间形式与组合设计》2021-2022学年第一学期期末试卷
- 培养健康饮食习惯的方案计划
- 木质家具运输合同三篇
- 课堂练习与家庭作业安排计划
- 酒店前台服务培训
- 24春国家开放大学《知识产权法》形考任务1-4参考答案
- 数字营销外文翻译文献
- 2024年4月自考00249国际私法答案及评分参考
- 数字经济国际税改“双支柱”方案的历史意义与现实应对专访中国国际税收研究会会长张志勇及国家税务总局国际税务司司长蒙玉英
- (2024年)新版药品管理法培训课件
- 20.第9课第2框课件《维护祖国统一和民族团结》
- 山东省烟台市2023-2024学年高二上学期期末考试数学试卷(含答案)
- 护理查房支气管扩张护理
- 健身与减脂塑型智慧树知到期末考试答案2024年
- (2024年)SA8000标准理解培训教程
- 新汉语水平考试 HSK(四级)试题及答案
评论
0/150
提交评论