新疆维吾尔自治区七校联考2024年八年级数学第二学期期末预测试题含解析_第1页
新疆维吾尔自治区七校联考2024年八年级数学第二学期期末预测试题含解析_第2页
新疆维吾尔自治区七校联考2024年八年级数学第二学期期末预测试题含解析_第3页
新疆维吾尔自治区七校联考2024年八年级数学第二学期期末预测试题含解析_第4页
新疆维吾尔自治区七校联考2024年八年级数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆维吾尔自治区七校联考2024年八年级数学第二学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在平面直角坐标系中,函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限2.下列式子从左到右变形错误的是()A. B. C. D.3.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10° B.15° C.20° D.25°4.如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为()A.(1,3) B.(1,) C.(1,) D.(,)5.下列调查中,适合用普查方式的是()A.夏季冷饮市场上某种冰淇淋的质量 B.某品牌灯泡的使用寿命C.某校九年级三班学生的视力 D.公民保护环境的意识6.下列交通标志是轴对称图形的是()A. B. C. D.7.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.58.下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.9.下列计算错误的是A. B.C. D.10.在平面直角坐标系中,点的位置所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.下列图形,是中心对称图形的是()A. B. C. D.12.平行四边形不一定具有的性质是()A.对角线互相垂直 B.对边平行且相等 C.对角线互相平分 D.对角相等二、填空题(每题4分,共24分)13.若,则xy的值等于_______.14.若与最简二次根式能合并成一项,则a=______.15.已知边长为5cm的菱形,一条对角线长为6cm,则另一条对角线的长为________cm.16.小明用S2=[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.17.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB=10,则△AOB的面积为_________________18.当x=4时,二次根式的值为______.三、解答题(共78分)19.(8分)已知,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,且AE=CF,连接AC,EF.(1)如图①,求证:EF//AC;(2)如图②,EF与边CD交于点G,连接BG,BE,①求证:△BAE≌△BCG;②若BE=EG=4,求△BAE的面积.20.(8分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.21.(8分)某网店销售单价分别为元/筒、元/筒的甲、乙两种羽毛球.根据消费者需求,该网店决定用不超过元购进甲、乙两种羽毛球共简.且甲种羽毛球的数量大于乙种羽毛球数量的.已知甲、乙两种羽毛球的进价分别为元/筒、元/筒。若设购进甲种羽毛球简.(1)该网店共有几种进货方案?(2)若所购进羽毛球均可全部售出,求该网店所获利润(元)与甲种羽毛球进货量(简)之间的函数关系式,并求利润的最大值22.(10分)为了了解学校开展“孝敬父母,从家务劳动做起”活动的实施情况,该校抽取八年级50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时)得到一组数据,绘制成下表:时间x(小时)划记人数所占百分比0.5x≤x≤1.0正正1428%1.0≤x<1.5正正正1530%1.5≤x<272≤x<2.548%2.5≤x<3正510%3≤x<3.533.5≤x<44%合计50100%(1)请填表中未完成的部分;(2)根据以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比是多少?(3)针对以上情况,写出一个20字以内的倡导“孝敬父母,热爱劳动”的句子.23.(10分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.24.(10分)如图,每个小方格都是边长为1个单位长度的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC向上平移4个单位长度后得到的△A1B1C1;(1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.25.(12分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?26.如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)

参考答案一、选择题(每题4分,共48分)1、D【解析】

由k、b的正负,利用一次函数图象与系数的关系即可得出函数y=-2x-3的图象经过第二、三、四象限,此题得解.【详解】∵k=-2<0,b=-3<0,∴函数y=-2x-3的图象经过第二、三、四象限.故选D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.2、C【解析】

根据分式的性质逐个判断即可.【详解】解:,故选:C.【点睛】本题主要考查分式的基本性质,分式的分子分母同时乘以一个不为0的数,不会改变分式的大小.3、B【解析】试题分析:根据正方形的性质及旋转的性质可得ΔECF是等腰直角三角形,∠DFC=∠BEC=60°,即得结果.由题意得EC=FC,∠DCF=90°,∠DFC=∠BEC=60°∴∠EFC=45°∴∠EFD=15°故选B.考点:正方形的性质,旋转的性质,等腰直角三角形的判定和性质点评:解答本题的关键是熟练掌握旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4、A【解析】

过D作DH⊥y轴于H,根据矩形和正方形的性质得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根据全等三角形的性质即可得到结论.【详解】过D作DH⊥y轴于H,∵四边形AOCB是矩形,四边形BDEF是正方形,∴AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,∴∠OEF+∠EFO=∠BFC+∠EFO=90°,∴∠OEF=∠BFO,∴△EOF≌△FCB(ASA),∴BC=OF,OE=CF,∴AO=OF,∵E是OA的中点,∴OE=OA=OF=CF,∵点C的坐标为(3,0),∴OC=3,∴OF=OA=2,AE=OE=CF=1,同理△DHE≌△EOF(ASA),∴DH=OE=1,HE=OF=2,∴OH=2,∴点D的坐标为(1,3),故选A.【点睛】本题考查了正方形的性质,坐标与图形性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.5、C【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此解答即可.【详解】解:A、夏季冷饮市场上某种冰淇淋的质量,适合抽样调查,故本选项错误;B、某品牌灯泡的使用寿命,适合抽样调查,故本选项错误;C、某校九年级三班学生的视力,适合全面调查,故本选项正确;D、调查公民保护环境的意识,适合抽样调查,故本选项错误.故选:C.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、C【解析】试题分析:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选C.点睛:此题主要考查了轴对称图形的概念.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.7、A【解析】这20个数的平均数是:,故选A.8、B【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,也是中心对称图形,故此选项正确;C.是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项错误.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、A【解析】

根据根式的计算法则逐个识别即可.【详解】A错误,;B.,正确;C.,正确D.,正确故选A.【点睛】本题主要考查根式的计算,特别要注意算术平方根的计算.10、B【解析】

观察题目,根据象限的特点,判断出所求的点的横纵坐标的符号;接下来,根据题目的点的坐标,判断点所在的象限.【详解】∵点的横坐标是负数,纵坐标是正数,

∴在平面直角坐标系的第二象限,

故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11、D【解析】

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。【详解】根据中心对称图形的概念,只有D为中心对称图形.A、B、C均为轴对称图形,但不是中心对称图形,故选D.【点睛】本题考查中心对称图形的概念.12、A【解析】

结合平行四边形的性质即可判定。【详解】结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.故选A.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键。二、填空题(每题4分,共24分)13、1【解析】

直接利用偶次方的性质以及二次根式的性质得出x,y的值进而得出答案.【详解】解:∵,∴x-1=0,y-1=0,解得:x=1,y=1,则xy=1.【点睛】此题主要考查了完全平方公式,偶次方的性质以及二次根式的性质,正确掌握相关性质是解题关键.14、2【解析】

根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=1.解得a=2.故答案为:2.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.15、8【解析】

根据菱形的对角线互相垂直平分,得已知对角线的一半是1.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.【详解】解:在菱形ABCD中,AB=5,AC=6,因为对角线互相垂直平分,所以∠AOB=90°,AO=1,在RT△AOB中,BO=,∴BD=2BO=8.【点睛】注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.16、30【解析】

根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【详解】解:∵S2=[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],∴平均数为3,共10个数据,∴x1+x2+x3+…+x10=10×3=30.故答案为30.【点睛】本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.17、12【解析】∵BD⊥AD,AD=6,AB=10,,∴.∵四边形ABCD是平行四边形,18、0【解析】

直接将,代入二次根式解答即可.【详解】解:把x=4代入二次根式=0,故答案为:0【点睛】此题主要考查了二次根式的定义,直接将代入求出,利用二次根式的性质直接开平方是解决问题的关键.三、解答题(共78分)19、(1)见解析;(1)①见解析;②△BAE的面积为1.【解析】

(1)利用平行四边形的判定及其性质定理即可解决问题;(1)①根据SAS可以证明两三角形全等;②先根据等腰直角△DEG计算DE的长,设AE=a,表示正方形的边长,根据勾股定理列式,可得+a=4,最后根据三角形面积公式,整体代入可得结论.【详解】(1)证明:∵正方形ABCD∴AE//CF,∵AE=CF∴AEFC是平行四边形∴EF//AC.(1)①如图,∵四边形ABCD是正方形,且EF∥AC,∴∠DEG=∠DAC=45°,∠DGE=∠DCA=45°;∵AD∥BF,∴∠CFG=∠DEG=45°,∵∠CGF=∠DGE=45°,∴∠CGF=∠CFG,∴CG=CF;∵AE=CF,∴AE=CG;在△ABE与△CBG中,∵AE=CG,∠BAE=∠BCG,AB=BC∴△ABE≌CBG(SAS);②由①知△DEG是等腰直角三角形,∵EG=4,∴DE=,设AE=a,则AB=AD=a+,Rt△ABE中,由勾股定理得:AB1+AE1=BE1,∴(a+)1+a1=41,∴a1+a=4,∴S△ABE=AB•AE=a(a+)=(a1+a)=×4=1.【点睛】本题是四边形的综合题,本题难度适中,考查了正方形的性质、全等三角形的判定及其应用问题;解题的关键是熟练掌握正方形的性质,结合等腰直角三角形的性质来解决问题;并利用未知数结合整体代入解决问题.20、证明见解析【解析】试题分析:(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;

(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG=GH,AG=DH,计算即可.试题解析:(1)证明:∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP.∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:作CH⊥DP,交DP于H点,∴∠DHC=90°.∵AE⊥DP,∴∠AED=90°,∴∠AED=∠DHC.∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH.∵在△ADE和△DCH中,,∴△ADE≌△DCH(AAS),∴CH=DE,DH=AE=EG.∴EH+EG=EH+HD,即GH=ED,∴GH=CH.∴CG=GH.∵AG=EG,∴AG=DH,∴CG+AG=GH+HD,∴CG+AG=(GH+HD),即CG+AG=DG.21、(1)3种;(2)W=,最大为1390元【解析】

(1)设购进甲种羽毛球筒,根据题意可列出关于m的不等式组,则可求得m的取值范围,再由m为整数即可求得进货方案;(2)用m表示出W,可得到W关于m的一次函数,再利用一次函数的性质即可求得答案.【详解】解:(1)设购进甲种羽毛球筒,则乙种羽毛球()筒,由题意,得,解得.又∵是整数,∴m=76,77,78共三种进货方案.(2)由题意知,甲利润:元/筒,乙利润:元/筒,∴∵随增大而增大∴当时,(元).即利润的最大值是1390元.【点睛】本题考查了一元一次不等式组的应用和一次函数的应用,弄清题意列出不等式组和一次函数解析式是解题的关键.22、(1)详见解析;(2)58%;(3)详见解析.【解析】

(1)根据百分比的意义以及各组的百分比的和是1即可完成表格;(2)根据百分比的意义即可求解;(3)根据实际情况,写出的句子只要符合题意,与家务劳动有关即可,答案不唯一.【详解】解:(1)一组的百分比是:;一组的百分比是:;一组的人数是2(人;(2)每周做家务的时间不超过1.5小时的学生所占的百分比是:;(3)孝敬父母,每天替父母做半小时的家务.【点睛】本题难度中等,考查统计图表的识别,要注意统计表中各部分所占百分比的和是1,各组人数的和就是样本容量.23、(1)证明见解析(2)1【解析】分析:(1)利用“AAS”可证明△EAF≌△EDC,则AF=DC,从而得到BD=DC;(2)先证明四边形AFBD是平行四边形,再利用等腰三角形的性质证明AD⊥BC,则四边形AFBD为矩形,然后计算出AD后再计算四边形AFBD的面积.详解:(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论