




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年江苏省东台市第六教育联盟八年级下册数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以点A为圆心,AC长为半径画弧,交数轴于点M,则点M对应的数是()A. B. C.+1 D.+12.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则BC的长为()A. B. C.1 D.23.如图,在四边形中,,交于,平分,,下面结论:①;②是等边三角形;③;④,其中正确的有A.1个 B.2个 C.3个 D.4个4.关于5-1A.它是无理数B.它是方程x2+x-1=0的一个根C.0.5<5-12D.不存在实数,使x2=55.如图,为矩形的对角线的中点,过点作的垂线分别交、于点、,连结.若该矩形的周长为20,则的周长为()A.10 B.9 C.8 D.56.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1) B.(1,﹣) C.(,﹣) D.(﹣,)7.如图,四边形ABCD是正方形,点E、F分别在AD、CD上,AF、BE相交于点G,且AF=BE,则下列结论不正确的是:()A.AF⊥BE B.BG=GF C.AE=DF D.∠EBC=∠AFD8.如图,在菱形ABCD中,于E,,,则菱形ABCD的周长是A.5 B.10 C.8 D.129.如图,在中,,,AB的垂直平分线交AB于点E,交BC于点F,连接AF,则的度数()A. B. C. D.10.如图,在平行四边形ABCD中,BC=10,AC=14,BD=8,则△BOC的周长是()A.21 B.22 C.25 D.3211.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则矩形的面积为()A.2 B.4 C. D.312.等于()A. B. C.3 D.二、填空题(每题4分,共24分)13.在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是________.14.若x1,x2是方程x2+x−1=0的两个根,则x12+x22=____________.15.如图,、、、分别是四边形各边的中点,若对角线、的长都是,则四边形的周长是______.16.已知点,,,在平面内找一点,使得以、、、为顶点的四边形为平行四边形,则点的坐标为__________.17.如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x<ax+4的解集为____________.18._____.三、解答题(共78分)19.(8分)已知函数.(1)若这个函数的图象经过原点,求的值(2)若这个函数的图象不经过第二象限,求的取值范围.20.(8分)把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接写出结论;(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.图1图221.(8分)如图,一次函数的图象与正比例函数的图象交于点.(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围;(3)求的面积.22.(10分)如图,四边形是面积为的平行四边形,其中.(1)如图①,点为边上任意一点,则的面积和的面积之和与的面积之间的数量关系是__________;(2)如图②,设交于点,则的面积和的面积之和与的面积之间的数量关系是___________;(3)如图③,点为内任意一点时,试猜想的面积和的面积之和与的面积之间的数量关系,并加以证明;(4)如图④,已知点为内任意一点,的面积为,的面积为,连接,求的面积.23.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?24.(10分)观察下列一组方程:;;;;它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.若也是“连根一元二次方程”,写出k的值,并解这个一元二次方程;请写出第n个方程和它的根.25.(12分)计算:+26.有一块田地的形状和尺寸如图所示,求它的面积.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据题意求出BC,根据勾股定理求出AC,得到AM的长,根据数轴的性质解答.【详解】解:由题意得,BC=AB=1,
由勾股定理得,AC=,
则AM=,
∴点M对应的数是+1,
故选:C.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.2、A【解析】∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴BC=,故选A.3、C【解析】
由两组对边平行证明四边形AECD是平行四边形,由AD=DC得出四边形AECD是菱形,得出AE=EC=CD=AD,则∠EAC=∠ECA,由角平分线定义得出∠EAB=∠EAC,则∠EAB=∠EAC=∠ECA,证出∠EAB=∠EAC=∠ECA=30°,则BE=AE,AC=2AB,①正确;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,则△ABO是等边三角形,②正确;由菱形的性质得出S△ADC=S△AEC=AB•CE,S△ABE=AB•BE,由BE=AE=CE,则S△ADC=2S△ABE,③错误;由DC=AE,BE=AE,则DC=2BE,④正确;即可得出结果.【详解】解:∵AD∥BC,AE∥CD,
∴四边形AECD是平行四边形,
∵AD=DC,
∴四边形AECD是菱形,
∴AE=EC=CD=AD,
∴∠EAC=∠ECA,
∵AE平分∠BAC,
∴∠EAB=∠EAC,
∴∠EAB=∠EAC=∠ECA,
∵∠ABC=90°,
∴∠EAB=∠EAC=∠ECA=30°,
∴BE=AE,AC=2AB,①正确;
∵AO=CO,
∴AB=AO,
∵∠EAB=∠EAC=30°,
∴∠BAO=60°,
∴△ABO是等边三角形,②正确;
∵四边形AECD是菱形,
∴S△ADC=S△AEC=AB•CE,
S△ABE=AB•BE,
∵BE=AE=CE,
∴S△ADC=2S△ABE,③错误;
∵DC=AE,BE=AE,
∴DC=2BE,④正确;
故选:C.【点睛】本题考查平行四边形的判定、菱形的判定与性质、角平分线定义、等边三角形的判定、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握菱形的性质与含30°角直角三角形的性质是解题关键.4、D【解析】
根据开方开不尽的数是无理数,可对A作出判断;利用一元二次方程的公式法求出方程x2+x-1=0的解,可对B作出判断,分别求出5-12-0.5和5-12【详解】解:A、5-12是无理数,故B、x2+x-1=0b2-4ac=1-4×1×(-1)=5∴x=-1±∴5-12是方程x2+x-1=0的一个根,故C、∵5∴5-12∵5∴5-12∴0.5<5-12<1,故D、∵5∴5-12∴存在实数x,使x2=5-12,故故答案为:D【点睛】本题主要考查无理数估算,解一元二次方程及平方根的性质,综合性较强,牢记基础知识是解题关键.5、A【解析】
根据线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等,可得出AE=CE,即可得出的周长.【详解】解:∵为矩形的对角线的中点,∴AO=OC,又∵AC⊥EF,∴AE=CE,又∵矩形的周长为20,∴AD+CD=∴的周长为CD+CE+DE=CD+AE+DE=10故答案为A.【点睛】此题主要考查利用线段垂直平分线的性质,进行等量转换,即可解题.6、C【解析】试题解析:∵三角板绕原点O顺时针旋转75°,
∴旋转后OA与y轴夹角为45°,
∵OA=2,
∴OA′=2,
∴点A′的横坐标为2×=,
纵坐标为-2×=-,
所以,点A′的坐标为(,-)故选C.7、B【解析】
由四边形ABCD是正方形,可得AD=BA,∠D=∠BAE=90°,利用直角三角形全等的判定(HL)可得Rt△ABE≌Rt△DAF,可得出边角关系,对应选项逐一验证即可.【详解】∵四边形ABCD是正方形,∴AD=AB,∠D=∠BAE=90°,又AF=BE,∴Rt△ABE≌Rt△DAF(HL),∴∠ABE=∠DAF,∠AEB=∠DFA,AE=DF,因此C选项正确,又∵∠DAF+∠DFA=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,即AF⊥BE,因此A选项正确,∵∠EBC+∠ABE=90°,∠ABE+∠AEB=90°,∠AEB=∠AFD,∴∠EBC=∠AFD,因此D选项正确,∵BE=AF,若BG=GF,则AG=GE,可得,∠DAF=45°,则AF应该为正方形的对角线,从图形来看,AF不是对角线,所以与题目矛盾,所以B选项错误,故选:B.【点睛】考查了正方形的性质,全等三角形的判定和性质,余角的定义,垂直的定义,熟记几何图形的概念,判定和性质定理是解题的关键,注意题目要求选不正确的.8、C【解析】
连接AC,根据线段垂直平分线的性质可得AB=AC=2,然后利用周长公式进行计算即可得答案.【详解】如图连接AC,,,,菱形ABCD的周长,故选C.【点睛】本题考查了菱形的性质、线段的垂直平分线的性质等知识,熟练掌握的灵活应用相关知识是解题的关键.9、D【解析】
先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF=∠B,由三角形内角与外角的关系即可解答.【详解】解:∵AB=AC,∠BAC=130°,
∴∠B=(180°-130°)÷2=25°,
∵EF垂直平分AB,
∴BF=AF,
∴∠BAF=∠B=25°.故选D.【点睛】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.10、A【解析】
由平行四边形的性质得出OA=OC=7,OB=OD=4,即可得出△BOC的周长.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC=7,OB=OD=4,∴△BOC的周长=OB+OC+BC=4+7+10=21;故选:A.【点睛】本题考查了平行四边形的性质以及三角形周长的计算;熟记平行四边形的对角线互相平分是解题关键.11、B【解析】
由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AC,然后根据勾股定理即可求出BC,进而得出矩形面积即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC=,∴矩形的面积=AB•BC=4;故选B.【点睛】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.12、B【解析】
利用最简二次根式定义求解即可.【详解】解:,故选:B.【点睛】此题考查最简二次根式定义,熟练掌握运算法则是解本题的关键.二、填空题(每题4分,共24分)13、PA=PB=PC【解析】
解:∵边AB的垂直平分线相交于P,∴PA=PB,∵边BC的垂直平分线相交于P,∴PB=PC,∴PA=PB=PC.故答案为:PA=PB=PC.14、3【解析】
先根据根与系数的关系求出x1+x2和x1•x2的值,再利用完全平方公式对所求代数式变形,然后把x1+x2和x1•x2的值整体代入计算即可.【详解】∵x1,x2是方程x2+x−1=0的两个根,
∴x1+x2=−=−=−1,x1•x2===−1,
∴x12+x22=(x1+x2)2−2x1⋅x2=(−1)2−2×(−1)=1+2=3.
故答案是:3.【点睛】本题考查根与系数的关系,解题的关键是掌握根与系数的关系.15、【解析】
利用三角形中位线定理易得所求四边形的各边长都等于AC,或BD的一半,进而求四边形周长即可.【详解】∵E,F,G,H,是四边形ABCD各边中点∴HG=AC,EF=AC,GF=HE=BD∴四边形EFGH的周长是HG+EF+GF+HE=(AC+AC+BD+BD)=×(20+20+20+20)=40(cm).故答案为40cm.【点睛】本题考查了三角形的中位线定理,解决本题的关键是找到四边形的四条边与已知的两条对角线的关系.三角形中位线的性质为我们证明两直线平行,两条线段之间的数量关系又提供了一个重要的依据.16、,,【解析】
根据题意画出图形,由平行四边形的性质两组对边分别平行且相等来确定点M的坐标.【详解】解:①当如图1时,
∵C(0,2),A(1,0),B(4,0),
∴AB=3,
∵四边形ABMC是平行四边形,
∴M(3,2);
②当如图2所示时,同①可知,M(-3,2);
③当如图3所示时,过点M作MD⊥x轴,
∵四边形ACBM是平行四边形,
∴BD=OA=1,MD=OC=2,
∴OD=4+1=5,
∴M(5,-2);
综上所述,点M坐标为(3,2)、(-3,2)、(5,-2).【点睛】本题考查了平行四边形的性质和判定,利用分类讨论思想是本题的关键.17、【解析】
由题意结合图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式的解集.【详解】解:两个条直线的交点坐标为A(1,3),当x<1时,直线y=ax+4在直线y=3x的上方,当x>1时,直线y=ax+4在直线y=3x的下方,故不等式3x<ax+4即直线y=ax+4在直线y=3x的上方的解集为x<1.故答案为:x<1.【点睛】本题主要考查正比例函数、一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.18、【解析】
原式化为最简二次根式,合并即可得到结果.【详解】解:原式=+2=3.故答案为3【点睛】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.三、解答题(共78分)19、(1)的值为3;(2)的取值范围为:.【解析】
(1)将原点坐标(0,0)代入解析式即可得到m的值;(2)分两种情况讨论:当2m+1=0,即m=-,函数解析式为:y=-,图象不经过第二象限;当2m+1>0,即m>-,并且m-3≤0,即m≤3;综合两种情况即可得到m的取值范围.【详解】(1)将原点坐标(0,0)代入解析式,得m−3=0,即m=3,所求的m的值为3;(2)当2m+1=0,即m=−,函数解析式为:y=−,图象不经过第二象限;②当2m+1>0,即m>−,并且m−3⩽0,即m⩽3,所以有−<m⩽3;所以m的取值范围为.【点睛】此题考查一次函数的性质,一次函数图象上点的坐标特征,解题关键在于原点坐标(0,0)代入解析式.20、(1)MA=MN,MA⊥MN;(2)成立,理由详见解析【解析】
(1)解:连接DE,∵四边形ABCD是正方形,∴AD=CD=AB=BC,∠DAB=∠DCE=90°,∵点M是DF的中点,∴AM=DF.∵△BEF是等腰直角三角形,∴AF=CE,在△ADF与△CDE中,,∴△ADF≌△CDE(SAS),∴DE=DF.∵点M,N分别为DF,EF的中点,∴MN是△EFD的中位线,∴MN=DE,∴AM=MN;∵MN是△EFD的中位线,∴MN∥DE,∴∠FMN=∠FDE.∵AM=MD,∴∠MAD=∠ADM,∵∠AMF是△ADM的外角,∴∠AMF=2∠ADM.∵△ADF≌△CDE,∴∠ADM=∠CDE,∴∠ADM+∠CDE+∠FDE=∠FMN+∠AMF=90°,∴MA⊥MN.∴MA=MN,MA⊥MN.(2)成立.理由:连接DE.∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°.在Rt△ADF中,∵点M是DF的中点,∴MA=DF=MD=MF,∴∠1=∠1.∵点N是EF的中点,∴MN是△DEF的中位线,∴MN=DE,MN∥DE.∵△BEF是等腰直角三角形,∴BF=BF,∠EBF=90°.∵点E、F分别在正方形CB、AB的延长线上,∴AB+BF=CB+BE,即AF=CE.在△ADF与△CDE中,∴△ADF≌△CDE,∴DF=DE,∠1=∠2,∴MA=MN,∠2=∠1.∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠1+∠5=90°,∴∠6=180°﹣(∠1+∠5)=90°,∴∠7=∠6=90°,MA⊥MN.考点:四边形综合题21、(1)一次函数表达式为y=2x-2;正比例函数为y=x;(2)x<2;(3)1.【解析】
(1)将(0,-2)和(1,0)代入解出一次函数的解析式,将M(2,2)代入正比例函数解答即可;(2)根据图象得出不等式的解集即可;(3)利用三角形的面积公式计算即可.【详解】经过和,解得,,一次函数表达式为:;把代入得,点,直线过点,,,正比例函数解析式.由图象可知,当时,一次函数与正比例函数相交;时,正比例函数图象在一次函数上方,故:时,.如图,作MN垂直x轴,则,,的面积为:.【点睛】本题考查了一次函数的图象和性质问题,解题的关键是根据待定系数法解出解析式.22、(1);(2);(3)结论:;理由见解析;(4)6【解析】
(1)根据平行四边形的性质可知:,即可解决问题;(2)理由平行四边形的性质可知:,即可解决问题;(3)结论:.如图③中,作于,延长交于.根据;(4)设的面积为,的面积为,则,推出,可得的面积;【详解】解:(1)如图①中,,.四边形是平行四边形,,,,.故答案为.(2)如图②中,四边形是平行四边形,,,,.故答案为.(3)结论:.理由:如图③中,作于,延长交于.,,,.(4)设的面积为,的面积为,则,,的面积,【点睛】本题考查平行四边形的判定和性质、平行线的性质、等高模型等正整数,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23、(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时,A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【解析】【分析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;(3)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,得结论.【详解】(1)设A城有化肥a吨,B城有化肥b吨,根据题意,得,解得,答:A城和B城分别有200吨和300吨肥料;(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨,从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨,设总运费为y元,根据题意,则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,∵,∴0≤x≤200,由于函数是一次函数,k=4>0,所以当x=0时,运费最少,最少运费是10040元;(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20﹣a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内科护士小讲课实务要点
- 脑动脉瘤破裂患者的护理
- 阿托西班常规治疗
- 员工服务意识与服务技巧培训
- 服务培训课件整个流程
- 护理临床教学比赛
- 学位论文语言
- 关于幼儿的论文
- 职工舞蹈培训讲课
- 电气工程及其自动化介绍
- 2025至2030中国智能物流行业发展趋势分析与未来投资战略咨询研究报告
- 病历书写规范与管理制度
- 如皋护士招聘题目及答案
- 校园信息发布管理制度
- 亮化日常管理制度
- 国家开放大学《中国法律史》期末机考题库
- 国家开放大学《管理学基础》期末机考题库
- 医疗器械网络交易服务三方平台质量管理体系文件-b2B和B2C综合版
- 《国际货运代理业务操作》课件 任务七 出口订舱操作流程规范
- Unit 7 A Day to Remember 单元话题阅读理解练习(原卷版)
- 八年级英语下学期期末考试(深圳专用)(解析版)
评论
0/150
提交评论