2024届山东省济南市八年级数学第二学期期末综合测试试题含解析_第1页
2024届山东省济南市八年级数学第二学期期末综合测试试题含解析_第2页
2024届山东省济南市八年级数学第二学期期末综合测试试题含解析_第3页
2024届山东省济南市八年级数学第二学期期末综合测试试题含解析_第4页
2024届山东省济南市八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济南市八年级数学第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A. B.C. D.2.下列调查中,适宜采用抽样调查方式的是()A.调查八年级某班学生的视力情况B.调查乘坐飞机的旅客是否携带违禁物品C.调查某品牌LED灯的使用寿命D.学校在给学生订制校服前尺寸大小的调查3.估算的运算结果应在()A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间4.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于()A.2﹣ B.1 C. D.﹣l5.要使二次根式有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x<16.已知一次函数.若随的增大而增大,则的取值范围是()A. B. C. D.7.如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是()A.△ABD≌△ECDB.连接BE,四边形ABEC为平行四边形C.DA=DED.CE=CA8.一组数据的众数、中位数分别是()A. B. C. D.9.一次函数是(是常数,)的图像如图所示,则不等式的解集是()A. B. C. D.10.已知关于的方程是一元二次方程,则的取值范围是()A. B. C. D.任意实数二、填空题(每小题3分,共24分)11.如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.12.如图,已知双曲线y=kx(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=_____13.平面直角坐标系中,点M(-3,-4)到x轴的距离为______________________.14.如图,以的三边为边向外作正方形,其面积分别为,且,当__________时..15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为_____.16.如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.17.若关于的分式方程有一个根是x=3,则实数m的值是____;18.如果一个n边形的内角和等于它的外角和的3倍,则n=______.三、解答题(共66分)19.(10分)已知非零实数满足,求的值.20.(6分)解方程:.21.(6分)阅读下列解题过程,并解答后面的问题:如图,在平面直角坐标系中,,,C为线段AB的中点,求C的坐标.解:分别过A,C作x轴的平行线,过B,C作y轴的平行线,两组平行线的交点如图1.设C的坐标为,则D、E、F的坐标为,,由图可知:,∴C的坐标为问题:(1)已知A(-1,4),B(3,-2),则线段AB的中点坐标为______(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,-4),(0,2),(5,6),求D的坐标.(3)如图2,B(6,4)在函数的图象上,A的坐标为(5,2),C在x轴上,D在函数的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.22.(8分)如图,一次函数的图象与反比例函数的图象交于,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)当为何值时反比例函数值大于一次函数的值;(3)当为何值时一次函数值大于比例函数的值;(4)求的面积.23.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(0,4),B(﹣4,2),C(0,2).(1)画△A1B1C1,使它与△ABC关于点C成中心对称;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,4),画出平移后对应的△A2B2C2;(3)若将△A1B1C1绕点P旋转可得到△A2B2C2,请直接写出旋转中心P的坐标.24.(8分)已知,如图,在ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:DE=BF25.(10分)解不等式组:,并写出它的所有整数解.26.(10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

试题分析:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时最高水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选D.考点:函数的图象.2、C【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、调查八年级某班学生的视力情况适合全面调查,故A选项错误;B、调查乘坐飞机的旅客是否携带违禁物品,适合全面调查,故B选项错误;C、调查某品牌LED灯的使用寿命适合抽样调查,故C选项正确;D、学校在给学生订制校服前尺寸大小的调查,适于全面调查,故D选项错误.故选C.【点睛】对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、C【解析】

先估算出的大小,然后求得的大小即可.【详解】解:9<15<16,3<<4,5<<6,故选C.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.4、D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.5、A【解析】

根据二次根式有意义的条件:被开方数为非负数,解答即可.【详解】∵有意义,∴x-1≥0,解得x≥1,故选A.【点睛】本题考查二次根式有意义的条件,使用二次根式有意义,被开方数大于等于0;熟练掌握二次根式的被开方数的非负数性质是解题关键.6、B【解析】

∵随的增大而增大,∴,,故选B.7、D【解析】

根据平行线的性质得出∠B=∠DCE,∠BAD=∠E,然后根据AAS证得△ABD≌△ECD,得出AD=DE,根据对角线互相平分得到四边形ABEC为平行四边形,CE=AB,即可解答.【详解】解:∵CE∥AB,∴∠B=∠DCE,∠BAD=∠E,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴DA=DE,AB=CE,∵AD=DE,BD=CD,∴四边形ABEC为平行四边形,故选:D.【点睛】本题考查了平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解决本题的关键是证明△ABD≌△ECD.8、B【解析】

利用众数和中位数的定义分析,即可得出.【详解】众数:出现次数最多的数,故众数为5;中位数:从小到大排列,中间的数.将数据从小到大排列:2,3,4,5,5;故中位数为4;故选B【点睛】本题考查了统计中的众数和中位数,属于基础题,注意求中位数时,要重新排列数字,再找中位数.9、C【解析】

根据一次函数的图象看出:一次函数y=kx+b(k,b是常数,k≠1)的图象与x轴的交点是(2,1),得到当x>2时,y<1,即可得到答案.【详解】解:一次函数y=kx+b(k,b是常数,k≠1)的图象与x轴的交点是(2,1),当x>2时,y<1.故答案为:x>2.故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.10、A【解析】

利用一元二次方程的定义求解即可.【详解】解:∵关于x的方程是一元二次方程,∴m+1≠0,即m≠−1,故选:A.【点睛】此题主要考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.二、填空题(每小题3分,共24分)11、【解析】

根据锐角三角函数的定义以及正方形的性质即可求出答案.【详解】解:设正方形的边长为x,∴CE=ED=x,∴AE=AC-CE=12-x,在Rt△ABC中,,在Rt△ADE中,,∴,∴解得:x=,故答案为:.【点睛】本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.12、2【解析】解:过D点作DE⊥x轴,垂足为E,∵Rt△OAB中,∠OAB=90°,∴DE∥AB,∵D为Rt△OAB斜边OB的中点D,∴DE为Rt△OAB的中位线,∵△OED∽△OAB,∴两三角形的相似比为,∵双曲线,可知,,由,得,解得13、1【解析】

根据点到x轴的距离是其纵坐标的绝对值解答即可.【详解】点P(﹣3,-1)到x轴的距离是其纵坐标的绝对值,所以点P(﹣3,-1)到x轴的距离为1.故答案为:1.【点睛】本题考查了点的坐标的几何意义,明确点的坐标与其到x、y轴的距离的关系是解答本题的关键.14、【解析】

先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【详解】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3−S1=16.故答案为:16.【点睛】此题主要考查了正方形的面积公式及勾股定理的应用,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.15、14【解析】

根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H横坐标表示点P从B开始运动到A的总路程,则问题可解.【详解】由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6∵∠B=120°,BC=4∴解得AB=6H点表示点P到达A时运动的路程为4+6+4=14故答案为14【点睛】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.16、1【解析】

过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,过点A作AE⊥BC于E,∴当AE∥QP时,则四边形ABPQ是直角梯形,∵∠B=60°,AB=8cm,∴BE=4cm,∵P,Q运动的速度都为每秒1cm,∴AQ=10﹣t,AP=t,∵BE=4,∴EP=t﹣4,∵AE⊥BC,AQ∥EP,AE∥QP,∴QP⊥BC,AQ⊥AD,∴四边形AEPQ是矩形,∴AQ=EP,即10﹣t=t﹣4,解得t=1,故答案为:1.【点睛】此题考查直角梯形,平行四边形的性质,解题关键在于作辅助线17、-1.【解析】

将x=3代入原方程,求解关于m的方程即可.【详解】解:将x=3代入原方程,得:m=2-3m=-1故答案为-1.【点睛】本题考查了解分式方程中的已知解求参数问题,其关键在于将解代入方程,求关于参数的新的方程的解.18、1【解析】

根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.【详解】解:由题意得:110(n-2)=360×3,解得:n=1,故答案为:1.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.三、解答题(共66分)19、1【解析】

由题设知a≥3,化简原式得,根据非负数的性质先求出a,b的值,从而求得a+b的值.【详解】解:∵a≥3,

∴原等式可化为,∴b+2=0且(a-3)b2=0,

∴a=3,b=-2,

∴a+b=1.【点睛】本题考查了二次根式有意义的条件及非负数的性质,几个非负数的和为零,则每一个数都为零.20、【解析】

先移项,再两边平方,即可得出一个一元二次方程,求出方程的解,最后进行检验即可.【详解】解:移项得:,两边平方得:,整理得:,解得:,,经检验不是原方程的解,舍去,∴是原方程的解.【点睛】本题考查了解无理方程的应用,解此题的关键是能把无理方程转化成有理方程,注意:解无理方程一定要进行检验.21、(1)(1,1);(2)D的坐标为(6,0);(3)D(2,2)或D(−6,−2)、D(10,6).【解析】

(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出,,代入数据可得出点D的坐标;(3)分类讨论,①当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标;②当AB为该平行四边形的一条对角线时,根据AB中点与CD中点重合,可得出点D坐标.【详解】解:(1)AB中点坐标为(,)即(1,1);(2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,由中点坐标公式可得:,,代入数据得:,,解得:xD=6,yD=0,所以点D的坐标为(6,0);(3)①当AB为该平行四边形一边时,则CD∥AB,对角线为AD、BC或AC、BD;故可得:,或,,故可得yC−yD=yA−yB=2或yD−yC=yA−yB=−2,∵yC=0,∴yD=2或−2,代入到y=x+1中,可得D(2,2)或D(−6,−2).当AB为该平行四边形的一条对角线时,则CD为另一条对角线;,,∴yC+yD=yA+yB=2+4,∵yC=0,∴yD=6,代入到y=x+1中,可得D(10,6)综上,符合条件的D点坐标为D(2,2)或D(−6,−2)、D(10,6).【点睛】本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,难点在第三问,注意分类讨论,不要漏解,难度较大.22、(1);;(2)当或时,反比例函数值大于一次函数的值;(3)当或时,一次函数值大于比例函数的值;(4).【解析】

(1)把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B的坐标代入求出B的坐标,把A、B的坐标代入一次函数y1=kx+b即可求出函数的解析式;(2)根据函数的图象和A、B的坐标即可得出答案;(3)根据函数的图象和A、B的坐标即可得出答案;(4)求出C的坐标,求出△AOC和△BOC的面积,即可求出答案.【详解】解:(1)∵把A(-2,1)代入得:m=-2,∴反比例函数的解析式是y=-,∵B(1,n)代入反比例函数y=-得:n=-2,∴B的坐标是(1,-2),把A、B的坐标代入一次函数y1=kx+b得:,解得:k=-1,b=-1,∴一次函数的解析式是y=-x-1;(2)从图象可知:当反比例函数值大于一次函数的值时x的取值范围-2<x<0或x>1.(3)从图象可知:当一次函数的值大于反比例函数的值时x的取值范围x<-2或0<x<1.(4)设直线与x轴的交点为C,∵把y=0代入一次函数的解析式是y=-x-1得:0=-x-1,x=-1,∴C(-1,0),△AOB的面积S=SAOC+S△BOC=×|-1|×1+×|-1|×|-2|=.【点睛】本题考查了反比例函数、一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用,主要考查学生的计算能力和观察图形的能力,用了数形结合思想,题目比较好.23、(1)见解析;(2)见解析;(3)P(﹣1,2)【解析】

(1)分别作出A,B,C的对应点A1,B1,(2)分别求出A,B,C的对应点A2,B2,(3)利用旋转对称图形得出对应点的连线的交点进而得出答案..【详解】解:(1)如图所示,△A1(2)如图所示,△A2(3)P(-1,2).理由如下:∵△A1B1C1与△A2B2C2关于P点成中心对称,∴P点是B1B2的中点,又∵B1B2的坐标为(4,2)、(-6,2),∴P坐标为(-1,2).【点睛】本题考查作图-旋转变换,平移变换等知识,根据题意得出对应点坐标是解题关键.24、见解析【解析】

要证明DE=BF成立,只需要根据条件证△AED≌△CFB即可.【详解】证明:∵四边形ABCD是平行四边形.∴AD∥BC,且AD=BC∴∠DAE=∠BCF∴在△DAE和△BCF中∴△DAE≌△BCF(SAS)∴DE=BF.考点:1.平行四边形的性质;2.全等三角形的判定与性质.25、解集为-4<x<2,不等式组的整数解是:﹣3,﹣2,﹣1、1.【解析】

分别解出两个不等式,然后得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论