北京市通州区2024年八年级数学第二学期期末经典试题含解析_第1页
北京市通州区2024年八年级数学第二学期期末经典试题含解析_第2页
北京市通州区2024年八年级数学第二学期期末经典试题含解析_第3页
北京市通州区2024年八年级数学第二学期期末经典试题含解析_第4页
北京市通州区2024年八年级数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市通州区2024年八年级数学第二学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在ABCD中,AB=3cm,BC=4cm,则ABCD的周长是()A.5cm B.7cm C.12cm D.14cm2.下列性质中,平行四边形不一定具备的是()A.邻角互补 B.对角互补C.对边相等 D.对角线互相平分3.下面四个图形中,不是轴对称图形的是(

)A.

B.

C.

D.4.用配方法解方程时,原方程应变形为()A. B. C. D.5.直角梯形的一个内角为,较长的腰为6,一底为5,则这个梯形的面积为()A. B. C.25 D.或6.已知四边形ABCD,有以下四个条件:①AB∥CD;②BC∥AD;③ABCD;④ABCADC.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法有()A.3种 B.4种 C.5种 D.6种7.在中,、分别是、边的中点,若,则的长是()A.9 B.5 C.6 D.48.如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50° B.60° C.40° D.30°9.如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为()A.1 B.1.5 C.2 D.2.510.已知一次函数图像如图所示,点在图像上,则与的大小关系为()A. B. C. D.二、填空题(每小题3分,共24分)11.直线l与直线y=3﹣2x平行,且在y轴上的截距是﹣5,那么直线l的表达式是_____.12.如图,在中,分别以点为圆心,大于的长为半径画弧,两弧交于点,作直线交于点,交于点,连接.若,连接点和的中点,则的长为_______.13.如图,平面直角坐标系中,已知直线上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴.垂足为B,直线AB与直线交于点A,且BD=2AD,连接CD,直线CD与直线交于点Q,则点Q的坐标为_______.14.已知函数,则自变量x的取值范围是___________________.15.如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.16.如图,在四边形ABCD中,已知AB=CD,再添加一个条件_______(写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)17.在□ABCD中,O是对角线的交点,那么____.18.已知可以被10到20之间某两个整数整除,则这两个数是___________.三、解答题(共66分)19.(10分)如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动速度为lcm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.20.(6分)如图,在中,,,.点从点出发沿方向以每秒个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒().过点作于点,连接、.(1)的长是,的长是;(2)在、的运动过程中,线段与的关系是否发生变化?若不变化,那么线段与是何关系,并给予证明;若变化,请说明理由.(3)四边形能够成为菱形吗?如果能,求出相应的值;如果不能,说明理由.21.(6分)已知a,b满足|a﹣|++(c﹣4)2=1.(1)求a,b,c的值;(2)判断以a,b,c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.(8分)如图,城气象台测得台风中心在城正西方向的处,以每小时的速度向南偏东的方向移动,距台风中心的范围内是受台风影响的区域.(1)求城与台风中心之间的最小距离;(2)求城受台风影响的时间有多长?23.(8分)(1)计算:.(2)计算:.(3)先化简,再求值:,其中满足.(4)解方程:.24.(8分)某区举行“中华诵经典诵读”大赛,小学、中学组根据初赛成绩,各选出5名选手组成小学代表队和中学代表队参加市级决赛,两个代表队各选出的5名选手的决赛成绩分别绘制成下列两个统计图根据以上信息,整理分析数据如下:平均数(分中位数(分众数(分小学组85100中学组85(1)写出表格中,,的值:,,.(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较稳定.25.(10分)某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.(1)求去年购买的文学书和科普书的单价各是多少元;(2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?26.(10分)定义:如果一元一次不等式①的解都是一元一次不等式②的解,那么称一元一次不等式①是一元一次不等式②的蕴含不等式.例如:不等式的解都是不等式的解,则是的蕴含不等式.(1)在不等式,,中,是的蕴含不等式的是_______;(2)若是的蕴含不等式,求的取值范围;(3)若是的蕴含不等式,试判断是否是的蕴含不等式,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

因为平行四边形的两组对边分别相等,则平行四边形ABCD的周长为2(AB+BC),根据已知即可求出周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∴平行四边形ABCD的周长为2(AB+BC)=2×7=14cm.故选:D.【点睛】此题主要考查平行四边的性质:平行四边形的两组对边分别相等.2、B【解析】

根据平行四边形边、角及对角线的性质进行解答即可.【详解】平行四边形的对角相等、邻角互补、对边相等、对角线互相平分.故选B.【点睛】本题主要考查的是平行四边形的性质,属于基础题型.理解平行四边形的性质是解决这个问题的关键所在.3、C【解析】

轴对称图形即沿一条线折叠,被折叠成的两部分能够完全重合,根据轴对称图形的特点分别分析判断即可.【详解】ABD、都是关于一条竖直轴对称,是轴对称图形,不符合题意;C、两半颜色不一样,大小也不是关于一条轴对称,不是轴对称图形,符合题意;故答案为:C.【点睛】此题主要考查轴对称图形的识别,解题的关键是熟知轴对称图形的定义.4、A【解析】

先将常数项移到右侧,然后在方程两边同时加上一次项一半的平方,左侧配方即可.【详解】,x2-4x=9,x2-4x+4=9+4,,故选A.【点睛】本题考查了配方法,正确掌握配方法的步骤以及注意事项是解题的关键.5、D【解析】试题分析:根据“直角梯形的一个内角为120°,较长的腰为6cm”可求得直角梯形的高,由于一底边长为5cm不能确定是上底还是下底,故要分两种情况讨论梯形的面积,根据梯形的面积公式=(上底+下底)×高,分别计算即可.解:根据题意可作出下图.BE为高线,BE⊥CD,即∠A=∠C=90°,∠ABD=120°,BD=6cm,∵AB∥CD,∠ABD=120°,∴∠D=60°,∴BE=6×sin60°=3cm;ED=6×cos60°=3cm;当AB=5cm时,CD=5+3=8cm,梯形的面积=cm2;当CD=5cm时,AB=5−3=2cm,梯形的面积=cm2;故梯形的面积为或,故选D.6、B【解析】

从四个条件中任选两个,共有以下6种组合:①②、①③、①④、②③、②④、③④,然后按照平行四边形的判定方法逐一判断即可.【详解】解:从四个条件中任选两个,共有以下6种组合:①②、①③、①④、②③、②④、③④;具备①②时,四边形ABCD满足两组对边分别平行,是平行四边形;具备①③时,四边形ABCD满足一组对边平行且相等,是平行四边形;具备①④时,如图,∵AB∥CD,∴ABC+C=180°.∵ABCADC,∴ADC+C=180°.∴AD∥CB.所以四边形ABCD是平行四边形;具备②③时,等腰梯形就符合一组对边平行,另一组对边相等,但它不是平行四边形,故具备②③时,不能判断是否是平行四边形;具备②④时,类似于上述①④,可以证明四边形ABCD是平行四边形;具备③④时,如图,四边形ABCD为平行四边形,连接AC,作AE垂直BC于E;在EB上截取EC'=EC,连接AC',则△AEC'≌△AEC,AC'=AC.把△ACD绕点A顺时针旋转∠CAC'的度数,则AC与AC'重合.显然四边形ABC'D'满足:AB=CD=C'D';∠B=∠D=∠D',而四边形ABC'D'并不是平行四边形.综上,从四个条件中任选两个,能使四边形ABCD成为平行四边形的选法共有4种.故选B.【点睛】此题主要考查了平行四边形的判定方法,平行四边形的判定方法主要有:两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.在具体应用时,要注意灵活选用.7、C【解析】

根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.【详解】解:∵D、E分别是BC、AC边的中点,∴DE是△CAB的中位线,∴AB=2DE=6.故选C.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记并灵活应用定理是解题的关键.8、A【解析】

根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【详解】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C,∠AOC=80°∴∠DOC=80°﹣α∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选:A.【点睛】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.9、B【解析】

作DH⊥BC于H,得到△DEB是等腰直角三角形,设DH=BH=EH=a,证明△CDH∽△CAB,得到,求得AB=,CE=2a,根据得到,利用阴影面积=求出答案.【详解】作DH⊥BC于H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠ABD=∠DBC=45°,∴△DEB是等腰直角三角形,设DH=BH=EH=a,∵DH∥AB,∴△CDH∽△CAB,∴,∵AD=1,∴AC=4,∴,∴AB=,CE=2a,∵,∴,∴=1,∴,∴图中阴影部分的面积====故选:B.【点睛】此题考查等腰直角三角形的判定及性质,相似三角形的判定及性质,求不规则图形的面积,根据阴影图形的特点确定求面积的方法进而进行计算是解答问题的关键.10、A【解析】

根据图像y随x增大而减小,比较横坐标的大小,再判断纵坐标的大小.【详解】根据图像y随x增大而减小1<3故选A【点睛】本题考查一次函数图像上的坐标特征,解题关键在于判断y与x的关系.二、填空题(每小题3分,共24分)11、y=﹣2x﹣1【解析】

因为平行,所以得到两个函数的k值相同,再根据截距是-1,可得b=-1,即可求解.【详解】∵直线l与直线y=3﹣2x平行,∴设直线l的解析式为:y=﹣2x+b,∵在y轴上的截距是﹣1,∴b=﹣1,∴y=﹣2x﹣1,∴直线l的表达式为:y=﹣2x﹣1.故答案为:y=﹣2x﹣1.【点睛】该题主要考查了一次函数图像平移的问题,12、1【解析】

由作图可知,MN为AB的垂直平分线,根据线段垂直平分线的性质得到AF=BF=6,且AE=BE,由线段中点的定义得到EG为△ABC的中位线,从而可得出结果.【详解】解:∵由作图可知,MN为AB的垂直平分线,∴AE=BE,=6,∴.而是的中位线,∴.故答案为:1.【点睛】本题考查了基本作图-作已知线段的垂直平分线:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.同时也考查了线段垂直平分线的性质以及三角形的中位线的性质.13、【解析】

如图,过点P作EF∥x轴,交y轴与点E,交AB于点F,则易证△CEP≌△PFD(ASA),∴EP=DF,∵P(1,1),∴BF=DF=1,BD=2,∵BD=2AD,∴BA=3∵点A在直线上,∴点A的坐标为(3,3),∴点D的坐标为(3,2),∴点C的坐标为(0,3),设直线CD的解析式为,则解得:∴直线CD的解析式为,联立可得∴点Q的坐标为.14、【解析】分析:根据函数的自变量取值范围的确定方法,从分式和二次根式有意义的条件列不等式求解即可.详解:由题意可得解得x≥-2且x≠3.故答案为:x≥-2且x≠3.点睛:此题主要考查了函数的自变量的取值范围,关键是明确函数的构成:二次根式的被开方数为非负数,分式的分母不等于0等条件.15、(2,−2)或(6,2).【解析】

设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.【详解】∵一次函数解析式为线y=-x+4,令x=0,解得y=4∴B(0,4),令y=0,解得x=4∴A(4,0),如图一,∵四边形OADC是菱形,设C(x,-x+4),∴OC=OA=,整理得:x2−6x+8=0,解得x1=2,x2=4,∴C(2,2),∴D(6,2);如图二、如图三,∵四边形OADC是菱形,设C(x,-x+4),∴AC=OA=,整理得:x2−8x+12=0,解得x1=2,x2=6,∴C(6,−2)或(2,2)∴D(2,−2)或(−2,2)∵D是y轴右侧平面内一点,故(−2,2)不符合题意,故答案为(2,−2)或(6,2).【点睛】本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.16、AD=BC(答案不唯一)【解析】

可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,得出四边形ABCD是平行四边形.17、【解析】

由向量的平行四边形法则及相等向量的概念可得答案.【详解】解:因为:□ABCD,所以,,所以:.故答案为:.【点睛】本题考查向量的平行四边形法则,掌握向量的平行四边形法则是解题的关键.18、15和1;【解析】

将利用平方差公式分解因式,根据可以被10到20之间的某两个整数整除,即可得到两因式分别为15和1.【详解】因式分解可得:=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)(28+1)(24+1)(24-1),∵24+1=1,24-1=15,∴232-1可以被10和20之间的15,1两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.三、解答题(共66分)19、(1)当t=1.5s时,四边形ABQP是平行四边形,理由详见解析;(1)5.4cm1.【解析】

(1)求出和,根据平行四边形的判定得出即可;(1)先求出高AM和ON的长度,再求出和的面积,再求出答案即可.【详解】(1)当时,四边形ABQP是平行四边形,理由如下:∵四边形ABCD是平行四边形∴∴在和中,∴∴,∵∴即∴四边形ABQP是平行四边形故当时,四边形ABQP是平行四边形;(1)过A作于M,过O作于N∵∴在中,由勾股定理得:由三角形的面积公式得:,即∴∵∴∵∴∴在和中,∴∴∵∴的面积为当时,∴的面积为∴故y的值为.【点睛】本题考查了平行四边形的性质和判定、三角形的面积、全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.20、(1),;(2)与平行且相等;(3)当时,四边形为菱形【解析】

(1)在Rt△ABC中,∠C=30°,则AC=2AB,根据勾股定理得到AC和AB的值.

(2)先证四边形AEFD是平行四边形,从而证得AD∥EF,并且AD=EF,在运动过程中关系不变.

(3)求得四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件及求得.【详解】(1)解:在中,,,根据勾股定理得:,,,;(2)与平行且相等.证明:在中,,,,.又,.,,.四边形为平行四边形.与平行且相等.(3)解:能;理由如下:,,.又,四边形为平行四边形.,,.若使平行四边形为菱形,则需,即,解得:.即当时,四边形为菱形.【点睛】本题考查勾股定理、菱形的判定及平行四边形的判定与性质,解题的关键是掌握勾股定理的使用、菱形的判定及平行四边形的判定与性质.21、(1)a=,b=5,c=4;(2)【解析】

(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.【详解】(1)∵a,b,c满足|a-|++(c-4)2=1,∴|a-|=1,=1,(c-4)2=1,解得a=,b=5,c=4.(2)∵a=,b=5,c=4,∴a+b=+5>4.∴以a,b,c为边能构成三角形.∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形.【点睛】本题考查了勾股定理的逆定理,非负数的性质,熟练掌握勾股定理的逆定理是解题的关键.22、(1)城与台风中心之间的最小距离是;(2)城遭受这次台风影响的时间为小时.【解析】

(1)城与台风中心之间的最小距离即为点A到OB的垂线段的长,作,根据直角三角形中所对的直角边等于斜边的一半求解即可;(2)设上点,千米,则还有一点,有千米,则在DG范围内,城遭受这次台风影响,所以求出DG长,除以台风移动的速度即为时间.【详解】解:作在中,,则答:城与台风中心之间的最小距离是设上点,千米,则还有一点,有千米是等腰三角形,是的垂直平分线,在中,千米,千米由勾股定理得,(千米)千米,遭受台风影响的时间是:(小时)答:城遭受这次台风影响个时间为小时【点睛】本题考查了含直角三角形的性质、等腰三角形的性质及勾股定理,正确理解题意是解题的关键.23、(1);(2);(3),;(4)【解析】

(1)(2)根据二次根式的乘法和加减法可以解答本题;(3)根据分式的加减法和除法可以化简题目中的式子,然后将整体代入求值即可解答本题;(4)根据解分式方程的方法,把分式方程化为整式方程,可以解答本题,注意验根.【详解】解:(1)原式==;(2)原式==;(3)原式====,∵,∴,∴原式==;(4)去分母,得,,去括号,得,,移项,得,,合并同类项,得,,系数化为1,得,,检验:当时,,∴是原方程的解.【点睛】本题考查了二次根式的混合运算、分式的化简求值以及解分式方程,解答本题的关键是明确它们各自的解答方法,注意分式方程要检验.24、(1)1,80,1;(2)从平均数和中位数进行分析,中学组代表队的决赛成绩较好;(3)中学组代表队选手成绩较稳定.【解析】

(1)根据平均数、中位数、众数的计算方法,通过计算得出答案,(2)从平均数和中位数两个方面进行比较、分析得出结论,(3)利用方差的计算公式,分别计算两个组的方差,通过比较得出答案.【详解】(1)中学组的平均数分;小学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论