版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春汽车经济技术开发区第九中学2024届数学八年级下册期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是()A.小时 B.小时 C.或小时 D.或或小时2.如图,将点P(-1,3)向右平移n个单位后落在直线y=2x-1上的点P′处,则n等于()A.2 B. C.3 D.43.如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是()A.k≤2 B.k≥ C.0<k< D.≤k≤24.若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤15.下列关于直线的说法正确的是()A.经过第一、二、四象限 B.与轴交于点C.随的增大而减小 D.与轴交于点6.如图,在正方形中,点为上一点,与交于点,若,则A.60° B.65° C.70° D.75°7.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.-2 C.4 D.-48.高跟鞋的奥秘:当人肚脐以下部分的长与身高,的比值越接近0.618时,越给人以一种匀称的美感,如图,某女士身高,脱去鞋后量得下半身长为,则建议她穿的高跟鞋高度大约为()A. B. C. D.9.使分式有意义的的取值范围是()A. B. C. D.10.下列植物叶子的图案中既是轴对称,又是中心对称图形的是()A. B. C.. D.11.如图所示是根据某班级名同学一周的体育锻炼情况绘制的统计图,由图像可知该班同学一周参加体育锻炼时间的中位数,众数分别是()A.,B.,C.,D.,12.罗老师从家里出发,到一个公共阅报栏看了一会儿报后,然后回家.右图描述了罗老师离家的距离(米与时间(分之间的函数关系,根据图象,下列说法错误的是A.罗老师离家的最远距离是400米B.罗老师看报的时间为10分钟C.罗老师回家的速度是40米分D.罗老师共走了600米二、填空题(每题4分,共24分)13.小刚和小强从A.B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,则小强的速度为_____.14.两条对角线______的四边形是平行四边形.15.已知点是直线上的一个动点,若点到两坐标轴的距离相等,则点的坐标是__________.16.甲、乙两个样本,甲的方差为0.102,乙的方差为0.06,哪个样本的数据波动大?答:________.17.如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.18.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为__________.三、解答题(共78分)19.(8分)小明同学为了解自己居住的小区家庭生活用水情况,从中随机调查了其中的家庭一年的月平均用水量(单位:顿).并将调查结果制成了如图所示的条形和扇形统计图.小明随机调查了户家庭,该小区共有户家庭;,;这个样本数据的众数是,中位数是;根据样本数据,请估计该小区家庭月平均用水量不超过吨的有多少户?20.(8分)如图,在边长为1个单位长度的小正方形组成的两个中,点都是格点.(1)将向左平移6个单位长度得到.请画出;(2)将绕点按逆时针方向旋转得到,请画出.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(10分)小红同学经常要测量学校旗杆的高度,她发现旗杆的绳子刚好垂到地面上,当她把绳子下端拉开5m后,发现这时绳子的下端正好距地面1m,学校旗杆的高度是()A.21m B.13m C.10m D.8m23.(10分)在四个互不相等的正整数中,最大的数是8,中位数是4,求这四个数(按从小到大的顺序排列)24.(10分)计算(1)(2)分解因式(3)解方程:.25.(12分)邻居张老汉养了一群鸡,现在要建一长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长34米.请同学解决以下问题:(1)若设鸡场的面积为y平方米,鸡场与墙平行的一边长为x米,请写出y与x之间的函数关系式,并写出x的取值范围;(2)当鸡场的面积为160平方米时,鸡场的长与宽分别是多少米?(3)鸡场的最大面积是多少?并求出此时鸡场的长与宽分别是多少米?26.如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD的解析式;
参考答案一、选择题(每题4分,共48分)1、C【解析】
利用众数及中位数的定义解答即可.【详解】解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C.【点睛】本题考查了众数及中位数的概念,解题的关键是根申请题意,并结合题意分类讨论解答.2、C【解析】
点向右平移得到,根据平移性质可设(),代入中可求出,则.【详解】∵点向右平移得到,∴设(),代入,解得,则,故答案选C.【点睛】本题考查了坐标系中函数图像平移的性质,以及利用函数解析式求点坐标,熟练掌握这些知识点是解题关键.3、D【解析】
如图,可知当直线在过点和点两点之间的时候满足条件,把、两点分别代入可求得的最小值和最大值,可求得答案.【详解】解:直线与正方形有公共点,直线在过点和点两直线之间之间,如图,可知,,当直线过点时,代入可得,解得,当直线过点时,代入可得,解得,的取值范围为:,故选:.【点睛】本题主要考查一次函数图象点的坐标,由条件得出直线在过和两点间的直线是解题的关键,注意数形结合思想的应用.4、C【解析】
不等式整理后,由已知解集确定出k的范围即可.【详解】解:不等式整理得:,由不等式组的解集为x<3,所以k+2≥3,得到k的范围是k≥1,故选:C.【点睛】本题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.5、D【解析】
直接根据一次函数的性质即可解答【详解】A.直线y=2x−5经过第一、三、四象限,错误;B.直线y=2x−5与x轴交于(,0),错误;C.直线y=2x−5,y随x的增大而增大,错误;D.直线y=2x−5与y轴交于(0,−5),正确故选:D.【点睛】此题考查一次函数的性质,解题关键在于掌握其性质6、C【解析】
先证明△ABE≌△ADE,得到∠ADE=∠ABE=90°﹣25°=65°,在△ADE中利用三角形内角和180°可求∠AED度数.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选:C.【点睛】本题主要考查了正方形的性质,解决正方形中角的问题一般会涉及对角线平分对角成45°.7、B【解析】
先设报3的人心里想的数为x,利用平均数定义表示报5的人心里想的数;报7的人心里想的数;报9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.【详解】设报3的人心里想的数是x∵报3与报5的两个人报的数的平均数是4∴报5的人心里想的数应该是8-x于是报7的人心里想的数应该是12-(8-x)=4+x报9的人心里想的数应该是16-(4+x)=12-x报1的人心里想的数应该是20-(12-x)=8+x报3的人心里想的数应该是4-(8+x)=-4-x所以x=-4-x,解得x=-2故答案选择B.【点睛】本题属于阅读理解和探查规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.8、C【解析】
先设出穿的高跟鞋的高度,再根据黄金分割的定义列出算式,求出x的值即可.【详解】解:设需要穿的高跟鞋是x(cm),根据黄金分割的定义得:,解得:,∴建议她穿的高跟鞋高度大约为8cm;故选:C.【点睛】本题主要考查了黄金分割的应用.掌握黄金分割的定义是解题的关键,是一道基础题.9、A【解析】
根据分式有意义的条件进行求解即可.【详解】由题意得,x+2≠0,解得:x≠-2,故选A.【点睛】本题考查了分式有意义的条件,熟练掌握“分母不为0时,分式有意义”是解题的关键.10、D【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形。故选项错误;B.是轴对称图形,不是中心对称图形。故选项错误;C.不是轴对称图形,也不是中心对称图形。故选项错误;D.是轴对称图形,也是中心对称图形。故选项正确。故选D.【点睛】此题考查中心对称图形,轴对称图形,解题关键在于掌握其概念11、B【解析】
根据中位数、众数的概念分别求解即可.【详解】将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;
众数是一组数据中出现次数最多的数,即8;
故选:B【点睛】考查了中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.12、D【解析】
根据函数图象中的数据可以判断各个选项中的说法是否正确.【详解】解:由图象可得,罗老师离家的最远距离是400米,故选项正确,罗老师看报的时间为分钟,故选项正确,罗老师回家的速度是米分,故选项正确,罗老师共走了米,故选项错误,故选:.【点睛】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(每题4分,共24分)13、4km/h.【解析】
此题为相遇问题,可根据相遇时甲乙所用时间相等,且甲乙所行路程之和为A,B两地距离,从而列出方程求出解.【详解】设小刚的速度为xkm/h,则相遇时小刚走了2xkm,小强走了(2x−24)km,由题意得,2x−24=0.5x,解得:x=16,则小强的速度为:(2×16−24)÷2=4(km/h),故答案为:4km/h.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意列出方程.14、互相平分【解析】
由“两条对角线互相平分的四边形是平行四边形”,即可得出结论.【详解】两条对角线互相平分的四边形是平行四边形;故答案为:互相平分.【点睛】本题考查了平行四边形的判定;熟记“两条对角线互相平分的四边形是平行四边形”是解题的关键.15、或【解析】
到两坐标轴距离相等,说明此点的横纵坐标的绝对值相等,那么x=y,或x=-y.据此作答.【详解】设(x,y).∵点为直线y=−2x+4上的一点,∴y=−2x+4.又∵点到两坐标轴距离相等,∴x=y或x=−y.当x=y时,解得x=y=,当x=−y时,解得y=−4,x=4.故点坐标为或故答案为:或【点睛】考查一次函数图象上点的坐标特征,根据点到两坐标轴的距离相等,列出方程求解即可.16、甲的波动比乙的波动大.【解析】
根据方差的定义,方差越小数据越稳定,故可得到正确答案.【详解】解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.
故答案:甲的波动比乙的波动大.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17、5.【解析】
根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分
N在矩形ABCD内部与
N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.【详解】∵四边形ABCD为矩形,∴∠BAD=90°,∵将△ABM沿BM折叠得到△NBM,∴∠MAB=∠MNB=90°.∵M为射线AD上的一个动点,△NBC是直角三角形,∴∠NBC=90°与∠NCB=90°都不符合题意,∴只有∠BNC=90°.①当∠BNC=90°,N在矩形ABCD内部,如图3.∵∠BNC=∠MNB=90°,∴M、N、C三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4.设AM=MN=x,∵MD=5﹣x,MC=4+x,∴在Rt△MDC中,CD5+MD5=MC5,35+(5﹣x)5=(4+x)5,解得x=3;当∠BNC=90°,N在矩形ABCD外部时,如图5.∵∠BNC=∠MNB=90°,∴M、C、N三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4,设AM=MN=y,∵MD=y﹣5,MC=y﹣4,∴在Rt△MDC中,CD5+MD5=MC5,35+(y﹣5)5=(y﹣4)5,解得y=9,则所有符合条件的M点所对应的AM和为3+9=5.故答案为5.【点睛】本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.18、1【解析】
首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求众数即可.3,a,2b,5与a,1,b的平均数都是1.【详解】解:∵两组数据:3,a,2b,5与a,1,b的平均数都是1,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,1,8,8,8,一共7个数,中间的数是1,所以中位数是1.故答案为1.三、解答题(共78分)19、;;;估计该小区家庭月平均用水量不超过顿的有户【解析】
(1)根据13吨的用户20户所占的比例为20%,即可计算出随机调查的家庭数,再根据随机调查的10%的家庭即可求出该小区的家庭户数.(2)根据(1)计算的调查总数减去10吨、12吨、13吨、14吨的家庭数量即可计算出m的值,再根据14吨的家庭数除以调查的总数即可计算出n的值.(3)根据条形图即可计算出样本的众数和中位数.(4)首先计算11吨和12吨的家庭所占的比例在根据小区的总数即可计算出不超过顿的有多少户.【详解】解:;;根据条形统计图可得11吨的有40个家庭是最多的,所以众数是11吨;根据统计条形图可得中位数也是11吨.答:估计该小区家庭月平均用水量不超过吨的有户【点睛】本题主要考查条形图和扇形图的计算问题,这是考试的热点,容易得分,熟练掌握计算.20、(1)图见详解;(1)图见详解.【解析】
(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;
(1)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A1B1C1.【详解】解:(1)如图所示:△A1B1C1,即为所求;
(1)如图所示:△A1B1C1,即为所求.【点睛】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.21、(1)60,90;(2)见解析;(3)300人【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.22、B【解析】
根据题意设旗杆的高AB为x米,则绳子AC的长为x米,在Rt△ACH利用勾股定理构建方程即可解决问题.【详解】如图,已知AB=AC,CD⊥BD,CH⊥AB,CD=BH=1米,CH=5米,设AB=AC=x米.在Rt△ACH中,∵AC2=AH2+CH2,∴x2=52+(x-1)2,∴x=13,∴AB=13(米),故选B.【点睛】此题考查了勾股定理在实际问题中的应用,能够正确理解题意继而构造直角三角形是解决本题的关键,难度一般.23、这四个数为或或.【解析】分析:根据中位数的定义得出第二个数和第三个数的和是8,再根据这四个数是不相等的正整数,得出这两个数是3、5或2、6,再根据这些数都是正整数得出第一个数是2或1,再把这四个数相加即可得出答案.详解:∵中位数是4,最大的数是8,∴第二个数和第三个数的和是8,∵这四个数是不相等的正整数,∴这两个数是3、5或2、6,∴这四个数是1,3,5,8或2,3,5,8或1,2,6,8,故答案为:1,2,6,8或1,3,5,8或2,3,5,8.点睛:此题考查了中位数,掌握中位数的概念是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.24、①;②;③无解【解析】
(1)分别求出各不等式的解集,再根据小大大小中间找求出其公共解集即可;(1)首先利用平方差公式进行分解,再利用完全平方公式进行二次分解即可;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)由①得x≥-1,由②得x<1,原不等式的解为-1≤x<1.(1)原式=(a1+4)1-(4a)1,=(a1+4+4a)(a1+4-4a),=(a+1)1(a-1)1.(3)去分母得:1-1x=1x-4-3,移项合并得:4x=8,解得:x=1,经检验x=1是增根,分式方程无解.【点睛】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第13课 五四运动
- 《企业及管理》课件
- 项目里程碑成果展
- 秋分习俗的地理解读
- 大班月份工作计划
- 2023年-2024年项目管理人员安全培训考试题答案标准卷
- 《电流跟电压》课件
- 隧道隧道内环境监测-洞察分析
- 性别平等与人口质量的关系-洞察分析
- 宇宙微波背景辐射的精细结构分析-洞察分析
- 2023-2024学年四川省宜宾市八年级上学期期末数学试卷及参考答案
- (统编版2024)语文七年级上册 第四单元写作《思路要清晰》 课件(新教材)
- 浙江省台州市2023-2024学年高一上学期期末考试 化学 含答案
- 一年级数学加减法口算题每日一练(25套打印版)
- 2024年度工作总结模板
- 送货员岗位劳动合同模板
- 2024年售楼处规章制度例文(六篇)
- 2024秋期国家开放大学本科《经济学(本)》一平台在线形考(形考任务1至6)试题及答案
- 动静脉内瘘成形术
- 法律意见书(适用于股权投资)
- JJF(苏) 276-2024 接触(触针)式表面轮廓测量仪校准规范
评论
0/150
提交评论