版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年江苏省无锡市数学八年级下册期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在△中,、是△的中线,与相交于点,点、分别是、的中点,连结.若=6cm,=8cm,则四边形DEFG的周长是()A.14cm B.18cmC.24cm D.28cm2.下列计算正确的是()A.﹣= B.×=6C.÷2=2 D.=﹣13.下列各式中,正确的是()A. B. C. D.4.用反证法证明:“若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,则a,b,c中至少有一个是偶数”,下列假设中正确的是()A.假设a,b,c都是偶数
B.假设a,b,c都不是偶数C.假设a,b,c至多有一个是偶数
D.假设a,b,c至多有两个是偶数5.如图,点是菱形边上的一动点,它从点出发沿在路径匀速运动到点,设的面积为,点的运动时间为,则关于的函数图象大致为A. B.C. D.6.如图,在矩形ABCD中,AB=1,BC=.将矩形ABCD绕点A逆时针旋转至矩形AB′C′D′,使得点B′恰好落在对角线BD上,连接DD′,则DD′的长度为()A. B. C.+1 D.27.下列命题是真命题的是()A.对角线相等的四边形是平行四边形 B.对角线互相平分且相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形 D.对角线互相垂直的四边形是平行四边形8.若,则下列不等式成立的是()A. B. C. D.9.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()A.1 B.2 C.3 D.10.某校对八年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):4、4、3.5、5、5、4,这组数据的众数是()A.4 B.3.5 C.5 D.311.一元二次方程根的情况是A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定12.四边形ABCD中,,,M、N分别是边AD,BC的中点,则线段MN的长的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.14.在Rt△ABC中,∠C=90°,AC=3,BC=1.作一边的垂直平分线交另一边于点D,则CD的长是______.15.如图所示,某人在D处测得山顶C的仰角为30°,向前走200米来到山脚A处,测得山坡AC的坡度i=1∶0.5,则山的高度为____________米.16.如图,在中,,平分,点为中点,则_____.17.如图,已知一块直角三角板的直角顶点与原点重合,另两个顶点,的坐标分别为,,现将该三角板向右平移使点与点重合,得到,则点的对应点的坐标为__________.18.计算:(2﹣1)(1+2)=_____.三、解答题(共78分)19.(8分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.20.(8分)化简求值:,其中x=1.21.(8分)如图,平行四边形中,延长至使,连接交于点,点是线段的中点.(1)如图1,若,,求平行四边形的面积;(2)如图2,过点作交于点,于点,连接,若,求证:.22.(10分)若一次函数不经过第三象限,求m、n的取值范围;23.(10分)当为何值时,分式的值比分式的值大2?24.(10分)如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,BE=DF,在此图中是否存在两个全等的三角形,并说明理由;它们能够由其中一个通过旋转而得到另外一个吗?简述旋转过程.25.(12分)如图,小明用自制的直角三角形纸板DEF测量树的高度1B.他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm.EF=30cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.26.在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.
参考答案一、选择题(每题4分,共48分)1、A【解析】
试题分析:∵点F、G分别是BO、CO的中点,BC=8cm∴FG=BC=4cm∵BD、CE是△ABC的中线∴DE=BC=4cm∵点F、G、E、D分别是BO、CO、AB、AC的中点,AO=6cm∴EF=AO=3cm,DG=AO=3cm∴四边形DEFG的周长="EF+FG+DG+DE=14"cm故选A考点:1、三角形的中位线;2、四边形的周长2、B【解析】
利用二次根式的加减法对A进行判定;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;利用分母有理化可对D进行判断.【详解】A、原式=2﹣=,所以A选项错误;B、原式=2×3=6,所以B选项正确;C、原式=,所以C选项错误;D、原式=,所以D选项错误.故选:B.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3、B【解析】
,要注意的双重非负性:.【详解】;;;,故选B.【点睛】本题考查平方根的计算,重点是掌握平方根的双重非负性.4、B【解析】
用反证法法证明数学命题时,应先假设命题的反面成立,求出要证的命题的否定,即为所求.【详解】解:用反证法法证明数学命题时,应先假设要证的命题的反面成立,即要证的命题的否定成立,
而命题:“若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,则a,b,c中至少有一个是偶数”的否定为:“假设a,b,c都不是偶数”,
故选:B.5、B【解析】
设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】设菱形的高为h,有三种情况:①当P在AB边上时,如图1,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.6、A【解析】
先求出∠ABD=60°,利用旋转的性质即可得到AB=AB′,进而得到△ABB′是等边三角形,于是得到∠BAB′=60°,再次利用旋转的性质得到∠DAD′=60°,结合AD=AD′,可得到△ADD′是等边三角形,最后得到DD′的长度.【详解】解:∵矩形ABCD中,AB=1,BC=,∴AD=BC=,∴tan∠ABD==,∴∠ABD=60°,∵AB=AB′,∴△ABB′是等边三角形,∴∠BAB′=60°,∴∠DAD′=60°,∵AD=AD′,∴△ADD′是等边三角形,∴DD′=AD=BC=,故选A.7、C【解析】
根据对角线互相平分的四边形是平行四边形;对角线互相平分且相等的四边形是矩形;对角线互相平分的四边形是平行四边形;对角线互相垂直平分的四边形是菱形,即可做出解答。【详解】解:A、对角线相等的四边形是平行四边形,说法错误,应是对角线互相平分的四边形是平行四边形;B、对角线互相平分且相等的四边形是平行四边形,说法错误,应是矩形;C、对角线互相平分的四边形是平行四边形,说法正确;D、对角线互相垂直平分的四边形不一定是平行四边形,错误;故选:C.【点睛】本题主要考查了平行四边形,以及特殊的平行四边形的判定,关键是熟练掌握各种四边形的判定方法.8、A【解析】
根据不等式的基本性质逐一判断即可.【详解】A.将已知不等式的两边同时加上5,得,故本选项符合题意;B.将已知不等式的两边同时乘,得,故本选项不符合题意;C.将已知不等式的两边同时乘,得,故本选项不符合题意;D.不能得出,故本选项不符合题意.故选A.【点睛】此题考查的是不等式的变形,掌握不等式的基本性质是解决此题的关键.9、C【解析】
根据平移的性质即可解答.【详解】如图连接,根据平行线的性质得到∠1=∠2,如图,平移的距离的长度故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.10、A【解析】
一组数据中出现次数最多的数据叫做众数,依此求解即可.【详解】在这一组数据中4出现了3次,次数最多,故众数是4.故选:A.【点睛】考查众数的概念,掌握众数的概念是解题的关键.11、C【解析】
由△=b2-4ac的情况进行分析.【详解】因为,△=b2-4ac=(-3)2-4×1×3=-3<0,所以,方程没有实数根.故选C【点睛】本题考核知识点:根判别式.解题关键点:熟记一元二次方程根判别式.12、C【解析】
如图,连接BD,过M作MG∥AB交BD于G,连接NG,∵M是边AD中点,AB=3,MG∥AB,∴MG是边AD的中位线;∴BG=GD,MG=AB=;∵N是BC中点,BG=GD,CD=5,∴NG是△BCD的中位线,∴NG=CD=,在三角形MNG中,由三角形三边关系得NG-MG<MN<MG+NG即-<MN<+∴1<MN<4,当MN=MG+NG,即当MN=4,四边形ABCD是梯形,故线段MN的长取值为.故选C.【点睛】此题主要考查中位线的应用,解题的关键是根据题意作出图形求解.二、填空题(每题4分,共24分)13、144(1﹣x)2=1.【解析】
设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.【详解】设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,根据题意,得144(1﹣x)2=1.故答案为144(1﹣x)2=1.【点睛】本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.14、或【解析】
分两种情况:①当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;②当作直角边的垂直平分线PQ,与斜边AB交于点D时,连接CD,根据直角三角形斜边上的中线性质求得CD.【详解】解:当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(1-x)2,解得x=,∴CD=BC-DB=1-=;当作直角边的垂直平分线PQ或P′Q′,都与斜边AB交于点D时,连接CD,则D是AB的中点,∴CD=AB=,综上可知,CD=或.故答案为:或.【点睛】本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,直角三角形斜边上的中线等于斜边的一半,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.15、【解析】本题是把实际问题转化为解直角三角形问题,由题意,已知DA=200,∠CDB=30°,CB:AB=1:0.5,∠CBD=90°,求CB.设AB=x,则CB=2x,由三角函数得:=tan30°,即=,求出x,从求出CB.即求出山的高度.解:已知山坡AC的坡度i=1:0.5,∴设AB=x,则CB=2x,又某人在D处测得山顶C的仰角为30°,即,∠CDB=30°,∴=tan30°,即=,解得:x=,∴CB=2x=,故答案为.16、1【解析】
根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.【详解】解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,点E为AC中点,
∴DE=AC=1,
故答案为:1.【点睛】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.17、【解析】
根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.【详解】∵A(-1,0),∴OA=1,
∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB′,∴平移的距离为1个单位长度,∵点B的坐标为∴点B的对应点B′的坐标是,故答案为:.【点睛】此题主要考查根据平移的性质求点坐标,熟练掌握,即可解题.18、7【解析】
根据二次根式的运算法则即可求出答案.【详解】原式=(2)2-1=8-1=7,故答案为:7.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.三、解答题(共78分)19、甲车的速度是60千米/时,乙车的速度是90千米/时.【解析】
根据题意,设出甲、乙的速度,然后根据题目中两车相遇时时间相同,列出方程,解方程即可.【详解】设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,,解得,x=60,经检验,x=60是原方程的解.则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.20、3x+2,2.【解析】
先将括号内异分母分式通分计算,再将除法变乘法,约分化简,再代入数据计算.【详解】解:原式===3x+2,当x=1时,原式=2.【点睛】本题考查分式的化简求值,熟练掌握分式的通分与约分是解题的关键.21、(1)(2)见解析【解析】
(1)首先证明CE⊥AF,想办法求出CD,AE即可解决问题.(2)证明:如图2中,连接BE,作EK⊥AC于K.利用全等三角形的性质证明AG=EK=KG,即可解决问题.【详解】(1)解:如图1中,∵CA=CF,AE=EF,∴CE⊥AF,∵CE=1,∠F=30°,∴CF=CA=2CE=2,AE=EF=,∵四边形ABCD平行四边形,∴AD∥CF,∴∠D=∠ECF,∵∠AED=∠CEF,AE=EF,∴△ADE≌△FCE(AAS),∴CE=DE=1,∴CD=2,∴平行四边形ABCD的面积=CD•AE=.(2)证明:如图2中,连接BE,作EK⊥AC于K.∵CE⊥AF,CE∥AB,∴AB⊥AE,∵BG⊥AC,∴∠BAH=∠AEC=∠AGB=90°,∴∠ABG+∠BAG=90°,∠BAG+∠CAE=90°,∴∠ABH=∠CAE,∵BH=AC,∴△BAH≌△AEC(AAS),∴BA=AE=CD,AH=CE=DE,∴AB=2AH,∵∠ABG=∠EAK,AB=AE,∠AGB=∠AKE,∴△BGA≌△AKE(AAS),∴AG=EK,∴tan∠ABH===,∴tan∠EAK==,∴AK=2EK,∴AG=GK,∴KG=KE,∵∠EKG=90°,∴EG==.【点睛】本题考查全等三角形的判定和性质,平行四边形的性质,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、【解析】
根据一次函数的图像不经过第三象限得到k<0,b≥0,故可求解.【详解】题意有:解得【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的图像与性质.23、当时,分式的值比分式的值大2.【解析】
根据题意列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:方程两边同乘以约去分母,得:化简整理,得:解得经检验:是原方程的根,所以,原方程的根是:所以,当时,分式的值比分式的值大2.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24、在此图中存在两个全等的三角形,即△CDF≌△CBE.△CDF是由△CBE绕点C沿顺时针方向旋转90°得到的.理由见解析.【解析】
在△CDF和△CBE中,根据正方形的性质知DC=BC、已知条件DF=BE可以证得△CDF≌△CBF.【详解】解:在此图中存在两个全等的三角形,即△CDF≌△CBE.理由如下:∵点F在正方形ABCD的边AD的延长线上,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第13课 五四运动
- 《企业及管理》课件
- 项目里程碑成果展
- 秋分习俗的地理解读
- 大班月份工作计划
- 2023年-2024年项目管理人员安全培训考试题答案标准卷
- 《电流跟电压》课件
- 隧道隧道内环境监测-洞察分析
- 性别平等与人口质量的关系-洞察分析
- 宇宙微波背景辐射的精细结构分析-洞察分析
- 2025年1月山西、陕西、宁夏、青海普通高等学校招生考试适应性测试(八省联考)政治
- 《广东省智慧高速公路建设指南(试行)》
- 护理年终个人工作总结
- 《临床颅内压增高》课件
- 2024老师聘用合同范本
- 国开电大《建筑结构试验》形考任务1-4参考答案
- 年度分析报告格式范文
- 浙江省2023年1月学业考试物理物理试题(解析版)
- 2024电力建设工程质量问题通病防止手册
- 【初中地理】世界的聚落+课件-2024-2025学年七年级地理上学期(湘教版2024)
- 2023-2024学年四川省宜宾市八年级上学期期末数学试卷及参考答案
评论
0/150
提交评论