2024届崇左市重点中学八年级数学第二学期期末检测模拟试题含解析_第1页
2024届崇左市重点中学八年级数学第二学期期末检测模拟试题含解析_第2页
2024届崇左市重点中学八年级数学第二学期期末检测模拟试题含解析_第3页
2024届崇左市重点中学八年级数学第二学期期末检测模拟试题含解析_第4页
2024届崇左市重点中学八年级数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届崇左市重点中学八年级数学第二学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围是()A.k≥1 B.k≤4 C.k<1 D.k≤12.下列多项式中,不能运用公式进行分解因式的是()A.a2+b2 B.x2﹣9 C.m2﹣n2 D.x2+2xy+y23.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣34.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A. B. C. D.5.下列分式中,最简分式是A. B. C. D.6.下列图形中既是轴对称图形又是中心对称图形的是()A.等腰三角形 B.平行四边形 C.正五边形 D.正十边形7.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手

平均数(环)

9.2

9.2

9.2

9.2

方差(环2)

0.035

0.015

0.025

0.027

则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁8.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A.8 B.9 C.10 D.119.如图,把经过一定的变换得到,如果上点的坐标为,那么这个点在中的对应点的坐标为()A. B. C. D.10.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95分,90分,88分,则小彤这学期的体育成绩为()A.89分 B.90分 C.92分 D.93分二、填空题(每小题3分,共24分)11.如图,矩形ABCD中,点E、F分别在AB、CD上,EF∥BC,EF交BD于点G.若EG=5,DF=2,则图中两块阴影部分的面积之和为______.12.某汽车在某一直线道路上行驶,该车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE).根据图中提供的信息,给出下列四种说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在行驶过程中的平均速度为千米/小时;④汽车自出发后3小时至4.5小时之间行驶的速度不变.其中说法正确的序号分别是_____(请写出所有的).13.若是正比例函数,则的值为______.14.在平面直角坐标系中,P(2,﹣3)关于x轴的对称点是_____15.如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.16.若<0,则代数式可化简为_____.17.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是,则成绩比较稳定的是(填“甲”或“乙”)18.如图,△ABC中,D,E分别为AB,AC的中点,∠B=70°,则∠ADE=度.三、解答题(共66分)19.(10分)已知:如图,C为线段BE上一点,AB∥DC,AB=EC,BC=CD.求证:∠A=∠E.20.(6分)(1)如图,若图中小正方形的边长为1,则△ABC的面积为______.(2)反思(1)的解题过程,解决下面问题:若,,(其中a,b均为正数)是一个三角形的三条边长,求此三角形的面积.21.(6分)如图,平面直角坐标系中,直线AB交y轴于点A(0,1),交x轴于点B(3,0).直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,在点D的上方,设P(1,n).(1)求直线AB的解析式;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.22.(8分)如图,正方形网格中每个小正方形边长都是,图中标有、、、、、、共个格点(每个小格的顶点叫做格点)(1)从个格点中选个点为顶点,在所给网格图中各画出-一个平行四边形:(2)在(1)所画的平行四边形中任选-一个,求出其面积.23.(8分)事业单位人员编制连进必考,现一事业单位需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方而进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲848088乙949269丙818478(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该单位规定:笔试、面试、体能分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.24.(8分)学校新到一批实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟完成;(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?25.(10分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,又分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D.求证:(1)点D在AB的中垂线上.(2)当CD=2时,求△ABC的面积.26.(10分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图像如图所示。(1)请根据图像回答下列问题:甲先出发小时后,乙才出发;在甲出发小时后两人相遇,这时他们距A地千米;(2)乙的行驶速度千米/小时;(3)分别求出甲、乙在行驶过程中的路程(千米)与时间(小时)之间的函数关系式(不要求写出自变量的取值范围)。

参考答案一、选择题(每小题3分,共30分)1、D【解析】

由一元二次方程有实数根可得△=b2﹣4ac=22﹣4×k×1≥0,解不等式即可.【详解】∵△=b2﹣4ac=22﹣4×k×1≥0,解得:k≤1,故选D.【点评】本题考查了一元二次方程根的判别式的应用,解此类题时切记不要忽略一元二次方程二次项系数不为零这一隐含条件.2、A【解析】A.不能进行因式分解,故不正确;B.可用平方差公式分解,即x2-9=(x+3)(x-3),故正确;C.可用平方差公式分解,即m2-n2=(m+n)(m-n),故正确;D.可完全平方公式分解,即=(x+y)2,故正确;故选A.3、D【解析】

将x1=1,x2=﹣3代入到方程中,对比前后的方程解的关系,即可列出新的方程.【详解】将x1=1,x2=﹣3代入到x2+2x﹣3=0得12+2×1﹣3=0,(-3)2+2×(-3)﹣3=0对比方程(2x+3)2+2(2x+3)﹣3=0,可得2x+3=1或﹣3解得:x1=﹣1,x2=﹣3故选D.【点睛】此题考查的是方程的解,掌握前后方程解的关系是解决此题的关键.4、D【解析】

根据图像分析不同时间段的水面上升速度,进而可得出答案.【详解】已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选D.【点睛】能够根据条件分析不同时间段的图像是什么形状是解答本题的关键.5、C【解析】

最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A、,不符合题意;B、,不符合题意;C、是最简分式,符合题意;D、,不符合题意;故选C.【点睛】本题考查了最简分式的定义及求法一个分式的分子与分母没有公因式时,叫最简分式分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题在解题中一定要引起注意.6、D【解析】

根据轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故错误;

B、不是轴对称图形,是中心对称图形.故错误;

C、是轴对称图形,不是中心对称图形.故错误;

D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、B【解析】在平均数相同时方差越小则数据波动越小说明数据越稳定,8、C【解析】

试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb=Sa+Sc=1+9=10,∴b的面积为10,故选C.考点:全等三角形的判定与性质;勾股定理;正方形的性质.9、B【解析】

先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.【详解】解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,

∴点P(x,y)的对应点P′的坐标为(-x,y+2).

故选:B.【点睛】本题考查了坐标与图形变化,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.10、B【解析】

根据加权平均数的计算公式列出算式,再进行计算即可.【详解】】解:根据题意得:

95×20%+90×30%+88×50%=90(分).

即小彤这学期的体育成绩为90分.

故选:B.【点睛】本题考查加权平均数,掌握加权平均数的计算公式是题的关键,是一道常考题.二、填空题(每小题3分,共24分)11、1.【解析】

由矩形的性质可得S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,可得S四边形AEGM=S四边形GFCN,可得S△AEG=S△FGC=5,即可求解.【详解】解:如图,过点G作MN⊥AD于M,交BC于N,

∵EG=5,DF=2,

∴S△AEG=×5×2=5

∵AD∥BC,MN⊥AD

∴MN⊥BC,且∠BAD=∠ADC=∠DCB=∠ABC=90°,EF∥BC,

易证:四边形AMGE是矩形,四边形MDFG是矩形,四边形GFCN是矩形,四边形EGNB是矩形

∴S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,

∴S四边形AEGM=S四边形GFCN,

∴S△AEG=S△FGC=5

∴两块阴影部分的面积之和为1.

故答案为:1.【点睛】本题考查矩形的性质,证明S△AEG=S△FGC=5是解题的关键.12、②④【解析】

根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.【详解】解:由图象可知,汽车共行驶了:120×2=240千米,故①错误,汽车在行驶图中停留了2﹣1.5=0.5(小时),故②正确,车在行驶过程中的平均速度为:千米/小时,故③错误,汽车自出发后3小时至4.5小时之间行驶的速度不变,故④正确,故答案为:②④.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13、2【解析】

根据正比例函数的定义即可求解.【详解】依题意得a-1=1,解得a=2【点睛】此题主要考查正比例函数的定义,解题的关键是熟知正比例函数的特点.14、(2,1)【解析】

平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【详解】点P(2,﹣1)关于x轴的对称点的坐标是(2,1),故答案为:2,1.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容,比较简单.15、1【解析】

连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.【详解】如图,连接BE、DF交于点O.∵四边形ABCD是正方形,∴,.∵是等腰直角三角形,∴,,∴.在和△中,∵,,,∴,∴.∵,∴,∴,,,,∴.故答案为1.【点睛】本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.16、【解析】

二次根式有意义,就隐含条件b>1,由ab<1,先判断出a、b的符号,再进行化简即可.【详解】若ab<1,且代数式有意义;故有b>1,a<1;则代数式=|a|=-a.故答案为:-a.【点睛】本题主要考查二次根式的化简方法与运用:当a>1时,=a;当a<1时,=-a;当a=1时,=1.17、甲【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵,∴成绩比较稳定的是甲.18、1【解析】

由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出∠ADE的度数.【详解】∵D,E分别为AB,AC的中点,∴DE是三角形的中位线,∴DE∥BC,∴∠ADE=∠B=1°,故答案为1.【点睛】本题考查了三角形中位线的性质以及平行线的性质.三、解答题(共66分)19、见解析【解析】

直接利用全等三角形的判定方法得出△ABC≌△ECD,即可得出答案.【详解】证明:∵AB∥DC,∴∠B=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS),∴∠A=∠E(全等三角形的对应角相等).【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.20、(1)3.5;(2)的面积为:.【解析】

(1)根据图形可知:△ABC的面积等于以3为边长的正方形面积与三个直角三角洲面积之差,代入数据即可得出结论;(2)构造以5a为长、2b为宽的矩形,利用(1)的面积的求法,代入数据即可得出结论.【详解】解:(1)S△ABC=3×3-×1×2×2×3×1×3=3.5,故答案为:3.5;(2)构造如图的矩形:设每个单位矩形的长为,宽为,则:,,,则的面积等于大矩形面积与三个直角三角形面积的差,故的面积为:.【点睛】本题考查勾股定理的应用以及三角形的面积,解题的关键是:(1)利用分割图形法求三角形面积;(2)构建矩形.本题属于基础题,难度不大,解决该题型题目时,通过构建矩形,利用分割图形法求不规则的图形的面积是关键.21、(1)y=x+1;(2);(3)点C的坐标是(3,4)或(5,2)或(3,2).【解析】

(1)把的坐标代入直线的解析式,即可求得的值,然后在解析式中,令,求得的值,即可求得的坐标;(2)利用即可求出结果;(3)分三种情况讨论,当、、分别为等腰直角三角形的直角顶点时,求出点的坐标分别为、、。【详解】(1)设直线AB的解析式是y=kx+b把A(0,1),B(3,0)代入得:解得:∴直线AB的解析式是:(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,=,P在点D的上方,∴PD=n﹣,由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴,∴;(3)当S△ABP=2时,,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2,∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).3种情况,如图3,∠PCB=90°,∴∠CPB=∠EBP=45°,∴△PCB≌△BEP,∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,综上所述点C的坐标是(3,4)或(5,2)或(3,2).【点睛】本题考核知识点:本题主要考查一次函数的应用和等腰三角形的性质.解题关键点:掌握一次函数和等腰三角形性质,运用分类思想.22、(1)见解析;(2)见解析【解析】

(1)根据平行四边形的性质即可得到结论;(2)根据平行四边形的面积公式计算即可得到结论.【详解】解:(1)如图所示,平行四边形ACEG和平行四边形BFGD即为所求;(2)菱形DBFG面积===12或平行四边形面积==15【点睛】本题考查了作图——应用与设计作图,解此类题目首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.23、(1)排名顺序为乙、甲、丙;(2)录用甲.【解析】

(1)分别求出甲、乙、丙的平均数,然后进行比较即可;(2)由题意可知,只有乙不符合规定,甲:84×60%+80×30%+88×10%=83.2,丙:81×60%+84×30%+78×10%=81.6,所以录用甲.【详解】解:(1),,,∴,∴排名顺序为乙、甲、丙.(2)由题意可知,只有乙不符合规定,∵,,∵∴录用甲.【点睛】本题考查了平均数与加权平均数,熟练运用平均数与加权平均数公式是解题的关键.24、(1)王师傅单独整理这批实验器材需要80分钟.(2)李老师至少要工作1分钟.【解析】

(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;(2)根据王师傅的工作时间不能超过30分钟,列出不等式求解.【详解】解:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,由题意,得:20(+)+20×=1,解得:x=80,经检验得:x=80是原方程的根.答:王师傅单独

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论