版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省泰安市岱岳区2024年数学八年级下册期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列多项式,能用平方差公式分解的是A. B.C. D.2.正方形的边长为,在其的对角线上取一点,使得,以为边作正方形,如图所示,若以为原点建立平面直角坐标系,点在轴正半轴上,点在轴的正半轴上,则点的坐标为()A. B. C. D.3.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.104.如图,将等边△ABC沿直线BC平移到△DEF,使点E与点C重合,连接BD,若AB=2,则BD的长为()A.23 B.3 C.3 D.255.如图,□ABCD中,AE平分∠DAB,∠B=100°则∠DAE等于()A.40° B.60° C.80° D.100°6.学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是()甲乙丙丁平均分94989896方差11.211.8A.甲 B.乙 C.丙 D.丁7.点向右平移2个单位得到对应点,则点的坐标是()A. B. C. D.8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2 B.2.2 C.2.4 D.2.59.已知正比例函数y=(m﹣8)x的图象过第二、四象限,则m的取值范围是()A.m≥8 B.m>8 C.m≤8 D.m<810.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°二、填空题(每小题3分,共24分)11.已知等腰三角形两条边的长为4和9,则它的周长______.12.已知△ABC中,AB=12,AC=13,BC=15,点D、E、F分别是AB、AC、BC的中点,则△DEF的周长是_____.13.两组数据:3,a,8,5与a,6,b的平均数都是6,若将这两组教据合并为一组,用这组新数据的中位为_______.14.一张矩形纸片ABCD,已知,.小明按所给图步骤折叠纸片,则线段DG长为______.15.端午期间,王老师一家自驾游去了离家170km的某地,如图是他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象,当他们离目的地还有20km时,汽车一共行驶的时间是_____.16.在一次数学活动课上,老师让同学们借助一副三角板画平行线AB,下面是小楠、小曼两位同学的作法:老师说:“小楠、小曼的作法都正确”请回答:小楠的作图依据是______;小曼的作图依据是______.17.如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.18.已知一次函数的图象过点,那么此一次函数的解析式为__________.三、解答题(共66分)19.(10分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.20.(6分)如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?21.(6分)已知在中,是边上的一点,的角平分线交于点,且,求证:.22.(8分)已知关于的一元二次方程:;(1)求证:无论为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及的值.23.(8分)(1)计算:(﹣)﹣.(2)如图所示,四边形ABCD是平行四边形,AB=10,AD=8,AC=6,求四边形ABCD的面积.24.(8分)如图,在中,点,分别在,上,且,求证:四边形是平行四边形.25.(10分)如图,ABCD中,的角平分线交AD于点E,的角平分线交于点,,,=50°.(1)求的度数;(2)求ABCD的周长.26.(10分)已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值.(2)若函数图象在y轴的交点的纵坐标为-2,求m的值.(3)若函数的图象平行直线y=-3x–3,求m的值.(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【详解】解:A、不能用平方差公式进行分解,故此选项错误;B、不能用平方差公式进行分解,故此选项错误;C、能用平方差公式进行分解,故此选项正确;D、不能用平方差公式进行分解,故此选项错误;故选C.【点睛】此题主要考查了公式法分解因式,关键是掌握能用平方差公式分解的多项式特点.2、D【解析】
作辅助线,根据正方形对角线平分内角的性质可证明△AGH是等腰直角三角形,计算GH和BH的长,可解答.【详解】解:过G作GH⊥x轴于H,
∵四边形ABCD是正方形,
∴∠BAC=45°,
∵四边形AEFG是正方形,AE=AB=2,
∴∠EAG=90°,AG=2,
∴∠HAG=45°,∵∠AHG=90°,
∴AH=GH=,
∴G(,2+),
故选:D.【点睛】本题考查了正方形的性质,等腰直角三角形的性质和判定等知识,掌握等腰直角三角形各边的关系是关键,理解坐标与图形性质.3、B【解析】试题分析:解方程可得:y=2或y=5,当边长为2时,对角线为6就不成立;则边长为5,则周长为20.考点:(1)、菱形的性质;(2)、方程的解4、A【解析】
利用平移的性质得出BC,CF、DF的长,得∠BDF=90°,∠DBF=30°,可得结论.【详解】解:由平移得:ΔABC≅ΔDEF,∵ΔABC是等边三角形,且AB=2,∴BC=EF=DF=2,∠DEF=60°,∴∠CBD=∠CDB=30°,∵∠CDF=60°,∴∠BDF=90°,RtΔBDF中,∴BD=23故选:A.【点睛】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出∠BDF=90°是解决问题的关键.5、A【解析】分析:由平行四边形的性质得出AD∥BC,得出∠DAB=180°-100°=80°,由角平分线的定义得出∠DAE=∠DAB=40°即可.详解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD+∠B=180°,∴∠DAB=180°−100°=80°,∵AE平分∠DAB,∴∠DAE=∠DAB=40°;点睛:本题主要考查了平行四边形的性质,关键在于理解平行四边形的对边互相平行.6、C【解析】
先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.【详解】乙、丙同学的平均数比甲、丁同学的平均数大,应从乙和丙同学中选,丙同学的方差比乙同学的小,丙同学的成绩较好且状态稳定,应选的是丙同学;故选:.【点睛】主要考查平均数和方差,方差可以反映数据的波动性.方差越小,越稳定.7、A【解析】
根据平移的坐标变化规律,将A的横坐标+2即可得到A′的坐标.【详解】∵点A(1,2)向右平移2个单位得到对应点,∴点的坐标为(1+2,2),即(3,2).故选A.【点睛】本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.8、C【解析】
根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°,又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故选:C.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.9、D【解析】
根据正比例函数的性质,首先根据图象的象限来判断m﹣1的大小,进而计算m的范围.【详解】解:∵正比例函数y=(m﹣1)x的图象过第二、四象限,∴m﹣1<0,解得:m<1.故选:D.【点睛】本题主要考查正比例函数的性质,根据一次函数的一次项系数的正负确定图象所在的象限.10、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.二、填空题(每小题3分,共24分)11、1【解析】
分9是腰长与底边长两种情况讨论求解即可.【详解】①当9是腰长时,三边分别为9、9、4时,能组成三角形,周长=9+9+4=1,②当9是底边时,三边分别为9、4、4,∵4+4<9,∴不能组成三角形,综上所述,等腰三角形的周长为1.故答案为:1.【点睛】本题考查了等腰三角形的两腰相等的性质,难点在于要分情况讨论求解.12、20【解析】
首先根据△ABC中,点D、E、F分别是AB、AC、BC的中点,判断出四边形DBFE和四边形DFCE为平行四边形,又根据平行四边形的性质,求出DE、EF、DF的值,进而得出△DEF的周长.【详解】解:∵△ABC中,点D、E、F分别是AB、AC、BC的中点,∴DE∥BC,DF∥AC,EF∥AB∴四边形DBFE和四边形DFCE为平行四边形,又∵AB=12,AC=13,BC=15,∴DB=EF=AB=6DF=CE=AC=6.5DE=FC=BC=7.5∴△DEF的周长是DE+EF+DF=7.5+6+6.5=20.【点睛】此题主要考查平行四边形的判定,即可得解.13、1【解析】
首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.【详解】∵两组数据:3,a,8,5与a,1,b的平均数都是1,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,1,8,8,8,一共7个数,第四个数是1,所以这组数据的中位数是1.故答案为1.【点睛】本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.14、【解析】
首先证明△DEA′是等腰直角三角形,求出DE,再说明DG=GE即可解决问题.【详解】解:由翻折可知:DA′=A′E=4,∵∠DA′E=90°,∴DE=,∵A′C′=2=DC′,C′G∥A′E,∴DG=GE=,故答案为:.【点睛】本题考查翻折变换,等腰直角三角形的判定和性质,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.15、2.25h【解析】
根据待定系数法,可得一次函数解析式,根据函数值,可得相应自变量的值【详解】设AB段的函数解析式是y=kx+b,y=kx+b的图象过A(1.5,90),B(2.5,170)解得∴AB段函数的解析式是y=80x-30离目的地还有20千米时,即y=170-20=150km,当y=150时,80x-30=150解得:x=2.25h,故答案为:2.25h【点睛】此题考查函数的图象,看懂图中数据是解题关键16、同位角相等,两直线平行或垂直于同一直线的两条直线平行内错角相等,两直线平行【解析】
由平行线的判定方法即可得到小楠、小曼的作图依据.【详解】解:∵∠B=∠D=90°,∴AB//CD(同位角相等,两直线平行);∵∠ABC=∠DCB=90°,∴AB//CD(内错角相等,两直线平行),故答案为:同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.【点睛】本题考查了作图-复杂作图和平行线的判定方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.17、(﹣4,3).【解析】
求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.【详解】解:∵点E(﹣8,0)在直线y=kx+6上,∴﹣8k+6=0,∴k=,∴y=x+6,∴P(x,x+6),由题意:×6×(x+6)=1,∴x=﹣4,∴P(﹣4,3),故答案为(﹣4,3).【点睛】本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.18、【解析】
用待定系数法即可得到答案.【详解】解:把代入得,解得,所以一次函数解析式为.故答案为【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.三、解答题(共66分)19、(1)(1,2),(3,2);(2)【解析】
(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【详解】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2),故答案为(1,2),(3,2);(2)∵正方形边长为a,∴AB=a,在直线y=2x中,当y=a时,x=,∴OA=,OD=,∴C(,a),将C(,a)代入y=kx,得a=k×,解得:k=,故答案为.【点睛】本题考查了正方形的性质与正比例函数的综合运用,熟练掌握和灵活运用正方形的性质是解题的关键.20、(1)证明见解析(2)添加AB=BC【解析】试题分析:(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.试题解析:(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB∥EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.理由:∵DB∥AE,DB=AE∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.考点:矩形的判定;平行四边形的判定与性质.21、证明见解析.【解析】
根据角平分线的性质和外角等于不相邻两内角和即可求得∠ABD=∠C,可证明△ABD∽△ABC,即可解题.【详解】∵平分,∴,∵,∴,∵,,∴,∵,,∴,∴,即:,∵,∴.【点睛】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.22、(1)详见解析;(2),【解析】
(1)根据根的判别式得出△=(k﹣3)2≥0,从而证出无论k取任何值,方程总有实数根.(2)先把x=2代入原方程,求出k的值,再解这个方程求出方程的另一个根.【详解】(1)证明:(方法一).∴无论为何值时,方程总有实数根.(方法二)将代人方程,等式成立,即是原方程的解,因此,无论为何值时,方程总有实数根,(2)把代人方程解得,解方程得【点睛】本题主要考查了一元二次方程的根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23、(1)﹣﹣3;(2)四边形ABCD的面积=1.【解析】
(1)根据二次根式的乘法法则、二次根式的性质计算即可;(2)根据勾股定理的逆定理得到AC⊥BC,根据平行是四边形的面积公式计算即可.【详解】(1)原式=﹣3﹣2=﹣﹣3;(2)AD2+AC2=64+36=100,AB2=100,∴AD2+AC2=AB2,∴AC⊥BC,∴四边形ABCD的面积=BC×AC=6×8=1.【点睛】本题考查的是平行四边形的性质、勾股定理的逆定理、二次根式的混合运算,掌握勾股定理的逆定理、二次根式的混合运算法则是解题的关键.24、见解析.【解析】
先根据平行四边形的性质得AB∥CD,则利用AE=CF,则可判断四边形AECF为平行四边形.【详解】四边形是平行四边形,.又`四边形是平行四边形.【点睛】本题考查平行四边形的性质和判定,能灵活运用定理进行推理是解题的关键.25、(1);(2)1.【解析】
(1)根据平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《室性早搏导管消融》课件
- 会博通10单用户版用户操作指引
- 《动物防疫法》考试题库100题(含答案)
- 蜂窝微纳孔、量子单层石墨烯面料技改项目可行性研究报告写作模板-申批备案
- 2025年河北女子职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 专题06 发展与合作-(解析版)
- 2025年昭通卫生职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 《医疗器械法规培训》课件
- 2025年春节消费机遇和备货建议报告
- 中班区域活动计划实施方案五篇
- 安全生产网格员培训
- 小学数学分数四则混合运算300题带答案
- 2024年交管12123学法减分考试题库和答案
- 临床下肢深静脉血栓的预防和护理新进展
- 动物生产与流通环节检疫(动物防疫检疫课件)
- 2024年山东泰安市泰山财金投资集团有限公司招聘笔试参考题库含答案解析
- 英语主语从句省公开课一等奖全国示范课微课金奖课件
- C139客户开发管理模型
- 年度工作总结与计划会议
- 医保按病种分值付费(DIP)院内培训
- 近五年重庆中考物理试题及答案2023
评论
0/150
提交评论