2024年陕西商南县八年级数学第二学期期末学业质量监测试题含解析_第1页
2024年陕西商南县八年级数学第二学期期末学业质量监测试题含解析_第2页
2024年陕西商南县八年级数学第二学期期末学业质量监测试题含解析_第3页
2024年陕西商南县八年级数学第二学期期末学业质量监测试题含解析_第4页
2024年陕西商南县八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年陕西商南县八年级数学第二学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,如果∠A+∠C=100°,则∠B的度数是()A.130° B.80° C.100° D.50°2.下列图形中是中心对称图形,但不是轴对称图形的是()A. B. C. D.3.下列二次根式中,化简后能与合并的是A. B. C. D.4.下列图形中既是中心对称图形,又是轴对称图形的是()A.正三角形 B.平行四边形 C.等腰梯形 D.正方形5.在函数y=1-2x自变量xA.x≠12 B.x≥12 C.x≤12 D.6.关于的不等式组恰好有四个整数解,那么的取值范围是()A. B. C. D.7.下列图案中,是中心对称图形的是()A. B.

C. D.8.下列事件中,属于随机事件的是()A.抛出的篮球往下落 B.在只有白球的袋子里摸出一个红球C.购买张彩票,中一等奖 D.地球绕太阳公转9.函数y=中,自变量x的取值范围是()A.x>-3 B.x≠0 C.x>-3且x≠0 D.x≠-310.在平面直角坐标系中,点M(﹣2,1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.如图,已知中,,,,是的垂直平分线,交于点,连接,则___12.在Rt△ABC中,∠A=90°,有一个锐角为10°,BC=1.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.13.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿A→B→C所走的路程是____m.(结果保留根号)14.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是.15.如图,在平面直角坐标系中,点在直线上.连结,将线段绕点顺时针旋转,点的对应点恰好落在直线上,则的值为_____.16.直线与坐标轴围成的图形的面积为________.17.在平面直角坐标系中点、分别是轴、轴上的点且点的坐标是,.点在线段上,是靠近点的三等分点.点是轴上的点,当是等腰三角形时,点的坐标是__________.18.不等式4x﹣6≥7x﹣15的正整数解的个数是______.三、解答题(共66分)19.(10分)已知:关于x的方程x2(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,腰BC=5,另外两条边是方程x2-4mx+4m220.(6分)如图,正方形网格上有和.(每一个小正方形的边长为)求证:;请你在正方形网格中画一个以点为位似中心的三角形并将放大倍.21.(6分)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC和CD于点P,Q.(1)求证:△ABP∽△DQR;(2)求的值.22.(8分)如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.(1)写出BE与AF之间的关系,并证明你的结论;(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长;(3)如图3,在(2)的条件下,作FQ∥DG交AB于点Q,请直接写出FQ的长.23.(8分)在四边形ABCD中,AB//CD,∠B=∠D.(1)求证:四边形ABCD为平行四边形;(2)若点P为对角线AC上的一点,PE⊥AB于E,PF⊥AD于F,且PE=PF,求证:四边形ABCD是菱形.24.(8分)如图,直线l1经过过点P(1,2),分别交x轴、y轴于点A(2,0),B.(1)求B点坐标;(2)点C为x轴负半轴上一点,过点C的直线l2:交线段AB于点D.①如图1,当点D恰与点P重合时,点Q(t,0)为x轴上一动点,过点Q作QM⊥x轴,分别交直线l1、l2于点M、N.若,MN=2MQ,求t的值;②如图2,若BC=CD,试判断m,n之间的数量关系并说明理由.25.(10分)化简求值:已知,求的值.26.(10分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据平行四边形的性质即可解答.【详解】解:在平行四边形ABCD中,∠A+∠C=100°,故∠A=∠C=50°,且AD∥BC,故∠B=180°-50°=130°.故答案选A.【点睛】本题考查平行四边形性质,对边平行,熟悉掌握是解题关键.2、D【解析】

将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.【详解】A、是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形,故选:D.【点睛】此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.3、B【解析】

根据二次根式的性质把各选项的二次根式化简,再根据能合并的二次根式是同类二次根式解答.【详解】、,不能与合并,故本选项错误;、,能与合并,故本选项正确;、,不能与合并,故本选项错误;、,不能与合并,故本选项错误.故选.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.4、D【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A.正三角形不是中心对称图形,是轴对称图形,故本选项错误;B.平行四边形是中心对称图形,不是轴对称图形,故本选项错误;C.等腰梯形不是中心对称图形,是轴对称图形,故本选项错误;D.正方形是中心对称图形,也是轴对称图形,故本选项正确.故选D.5、C【解析】

根据被开方式大于或等于零解答即可.【详解】由题意得1-2x≥0,∴x≤12故选C.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.6、C【解析】

可先用m表示出不等式组的解集,再根据恰有四个整数解可得到关于m的不等式,可求得m的取值范围.【详解】解:在中,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有四个整数解,∴整数解为0,1,2,3,∴-1≤m<0,故选C.【点睛】本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有四个整数解的应用.7、D【解析】

根据中心对称图形的定义逐一进行分析判断即可.【详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.8、C【解析】

随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.【详解】A.抛出的篮球会落下是必然事件,故本选项错误;B.从装有白球的袋里摸出红球,是不可能事件,故本选项错误;C.购买10张彩票,中一等奖是随机事件,故本选正确。D.地球绕太阳公转,是必然事件,故本选项错误;故选:C.【点睛】本题考查随机事件,熟练掌握随机事件的定义是解题关键.9、D【解析】试题分析:根据分式的意义,可知其分母不为0,可得x+3≠0,解得x≠-3.故选D10、B【解析】∵点P的横坐标为负,纵坐标为正,∴该点在第二象限.故选B.二、填空题(每小题3分,共24分)11、5【解析】

由是的垂直平分线可得AD=CD,可得∠CAD=∠ACD,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B,可得CD=BD,可知CD=BD=AD=【详解】解:∵是的垂直平分线∴AD=CD∴∠CAD=∠ACD∵,,又∵∴∴∠ACB=90°∵∠ACD+∠DCB=90°,∠CAB+∠B=90°∴∠DCB=∠B∴CD=BD∴CD=BD=AD=故答案为5【点睛】本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键.12、1或2或4【解析】

如图1:当∠C=10°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=10°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=10°,∴△PBC是等边三角形,∴CP=BC=1;如图3:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°﹣30°=30°,∴PC=PB,∵BC=1,∴AB=3,∴PC=PB===2如图4:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°+30°=90°,∴PC=BC÷cos30°=4.故答案为1或2或4.考点:解直角三角形13、【解析】

由图形可以看出AB=BC,要求AB的长,可以看到,AB、BC分别是直角边为1、2的两个直角三角形的斜边,运用勾股定理求出计算和即可.【详解】解:折线分为AB、BC两段,

AB、BC分别看作直角三角形斜边,

由勾股定理得AB=BC==米.

小明沿图中所示的折线从A⇒B⇒C所走的路程为+=2米故答案为:2米.【点睛】本题考查了勾股定理的简单应用,在图形中正确找到直角三角形是解题关键.14、15.6【解析】试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃.考点:折线统计图;中位数15、2【解析】

先把点A坐标代入直线y=2x+3,得出m的值,然后得出点B的坐标,再代入直线y=﹣x+b解答即可.【详解】解:把A(﹣1,m)代入直线y=2x+3,可得:m=﹣2+3=1,因为线段OA绕点O顺时针旋转90°,所以点B的坐标为(1,1),把点B代入直线y=﹣x+b,可得:1=﹣1+b,b=2,故答案为:2【点睛】此题考查一次函数问题,关键是根据代入法解解析式进行分析.16、1【解析】

由一次函数的解析式求得与坐标轴的交点,然后利用三角形的面积公式即可得出结论.【详解】由一次函数y=x+4可知:一次函数与x轴的交点为(-4,0),与y轴的交点为(0,4),∴其图象与两坐标轴围成的图形面积=×4×4=1.故答案为:1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17、(0,)或(0,-)或(0,-)或(0,-2)【解析】

根据条件可得AC=2,过点C作CD⊥OA,由勾股定理得到OC=,再分以下三种情况求解:①当OP=OC时,可直接得出点P的坐标为(0,)或(0,-);②当PO=PC时,点P在OC的垂直平分线PE上,先求出直线OC的解析式,从而可求出直线PE的解析式,最后可求得P(0,-);③当CO=CP时,根据OP=2|yC|=2×1=2,求得P(0,-2).【详解】解:∵点B坐标是(0,-3),∠OAB=30°,

∴AB=2×3=6,AO=3,

∵点C在线段AB上,是靠近点A的三等分点,

∴AC=2,

过点C作CD⊥OA于D,

∴CD=AC=1,

∴AD=CD=,

∴OD=OA-AD=3-=2,

∴OC=.∵△OCP为等腰三角形,分以下三种情况:

①当OP=OC=时,点P的坐标为(0,)或(0,-);

②当PO=PC时,点P在OC的垂直平分线PE上,其中E为OC的中点,∴点E的坐标为(,-),设直线OC的解析式为y=k1x,将点C(2,-1)代入得k1=-,则可设直线PE的解析式为y=k2x+b,则k1·k2=-1,∴k2=2,∴将点E(,-)代入y=2x+b,得b=-,

∴P(0,−),

③当CO=CP时,OP=2|yC|=2×1=2,

∴P(0,-2),

综上所述,当△OCP为等腰三角形时,点P的坐标为(0,)或(0,-)或(0,-)或(0,-2),

故答案为:(0,)或(0,-)或(0,-)或(0,-2).【点睛】本题考查了等腰三角形的判定和性质,含30°的直角三角形的性质,勾股定理以及一次函数解析式的求法等知识,正确作出辅助线是解题的关键.18、3【解析】

首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可【详解】不等式的解集是x≤3,故不等式4x-6≥7x-15的正整数解为1,2,3故答案为:3【点睛】此题考查一元一次不等式的整数解,掌握运算法则是解题关键三、解答题(共66分)19、(1)无论m为何值,该方程总有两个不相等的实数根;(2)此三角形的周长为13或17.【解析】

(1)根据判别式即可求出答案.(2)由题意可知:该方程的其中一根为5,从而可求出m的值,最后根据m的值即可求出三角形的周长;【详解】解:(1)∵Δ=-4m∴无论m为何值,该方程总有两个不相等的实数根(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x3-4mx+4将x=5代入原方程,得:25-20m+4m2-1=0当m=2时,原方程为x2-8x+15=0,解得:∵3,5,5能够组成三角形,∴该三角形的周长为3+5+5=13;当m=3时,原方程为x2-12x+35=0,解得:∵5,5,7,能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.【点睛】本题考查一元二次方程,等腰三角形的定义,三角形三边的关系,解题的关键是熟练运用根与系数的关系,本题属于中等题型.20、(1)见解析;(2)见解析.【解析】

(1)利用、,,即可得出△A1B1C1∽△A2B2C2;(2)延长C2A2到A′,使2C2A2=C2A′,得到C2的对应点A′,同法得到其余点的对应点,顺次连接即为所求图形.【详解】.证明:∵,,,∴,∴;解:如图所示:【点睛】此题主要考查了相似三角形的判定以及位似变换的关键是根据位似中心和位似比确定对应点的位置.21、(1)见解析;(2).【解析】

(1)根据平行线的性质可证明两三角形相似;(2)根据平行四边形的性质及三角形中位线定理得:BP=PR,则CP=RE,证明△CPQ∽△DRQ,可得,由(1)中的相似列比例式可得结论.【详解】(1)∵四边形ABCD和四边形ACED都是平行四边形,∴AB∥CD,AC∥DE,∴∠BAC=∠ACD,∠ACD=∠CDE,∴∠BAC=∠QDR,∵AB∥CD,∴∠ABP=∠DQR,∴△ABP∽△DQR;(2)∵四边形ABCD和四边形ACED都是平行四边形,∴AD=BC,AD=CE,∴BC=CE,∵CP∥RE,∴BP=PR,∴CP=RE,∵点R为DE的中点,∴DR=RE,∴,∵CP∥DR,∴△CPQ∽△DRQ,∴,∴,由(1)得:△ABP∽△DQR,∴.【点睛】此题考查了相似三角形的判定与性质以及平行四边形的性质.此题有难度,注意掌握数形结合思想的应用.22、(1)BE=AF,BE⊥AF;(2)GD是∠EGF的角平分线,证明见解析,GD=2105;(3)FQ=【解析】

(1)根据已知条件可先证明△BAE≌△ADF,得到BE=AF,再由角的关系得到∠AGE=90°从而证明BE⊥AF;(2)过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,根据勾股定理和三角形的面积相等求出DN,然后证明△AEG≌△DEM,得到DN=DM,再根据角平分线的性质可证明GD平分∠EGF,进而在等腰直角三角形中求得GD;(3)过点G作GH∥AQ交FQ于H,可得到四边形DFHG是平行四边形,进而可得△FGH∽△FAQ,然后根据三角形相似的性质可求得FQ.【详解】解:(1)BE=AF,BE⊥AF,理由:四边形ABCD是正方形,∴BA=AD=CD,∠BAE=∠D=90°,∵DE=CF,∴AE=DF,∴△BAE≌△ADF(SAS),∴BE=AF,∠ABE=∠DAF,∵∠ABE+∠AEB=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,∴BE⊥AF(2)如图2,过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,在Rt△ADF中,根据勾股定理得,AF=5,∵S△ADF=12AD×FD=12∴DN=25∵△BAE≌△ADF,∴S△BAE=S△ADF,∵BE=AF,∴AG=DN,∵AE=DE,∠MED=∠AEG,∠DME=∠AGM,∴△AEG≌△DEM(AAS),∴AG=DM,∴DN=DM,∵DM⊥BE,DN⊥AF,∴GD平分∠MGN,即GD平分∠EGF,∴∠DGN=12∠MGN=45°∴△DGN是等腰直角三角形,∴GD=2DN=210(3)如图3,由(2)知,GD=2105,AF=5,AG=DN=∴FG=AF﹣AG=35过点G作GH∥AQ交FQ于H,∴GH∥DF,∵FQ∥DG,∴四边形DFHG是平行四边形,∴FH=DG=210∵GH∥AQ,∴△FGH∽△FAQ,∴FGAF∴35∴FQ=210【点睛】全等三角形的判定和性质、勾股定理、角平分线的性质、平行四边形的判定和性质都是本题的考点,此题综合性比较强,熟练掌握基础知识并作出合适的辅助线是解题的关键.23、(1)证明见解析;(2)证明见解析.【解析】

(1)根据平行线的性质和平行四边形的判定证明即可;(2)根据角平分线的性质和菱形的判定证明即可.【详解】(1)∵AB∥CD,∴∠DCA=∠BAC,在△ADC与△ABC中,,∴△ADC≌△CBA(AAS),∴AB=DC,∵AB∥CD,∴四边形ABCD为平行四边形;(2)∵四边形ABCD为平行四边形,∴∠DAB=∠DCB,∵PE⊥AB于E,PF⊥AD于F,且PE=PF,∴∠DAC=∠BAC=∠DCA=∠BCA,∴AB=BC,∴四边形ABCD是菱形.【点睛】本题考查了菱形的判定与性质.菱形的判定方法有五多种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.24、(1);(2)①,;②【解析】【分析】(1)用待定系数法求解;(2)点Q的位置有两种情况:当点Q在点A左侧,点P的右侧时;当点Q在点P的右侧时,.都有,再根据MN=2MQ,可求t的值;(3)由BC=CD,证△BCO≌△CDE,设C(a,0),D(4+a,-a),并代入解析式,通过解方程组可得.【详解】解:(1)设直线l1的解析式为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论