




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省丽水地区五校联考2024届数学八年级下册期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.函数自变量x的取值范围是()A.x≥1且x≠3 B.x≥1 C.x≠3 D.x>1且x≠32.下面四个应用图标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差4.下列说法:①平方等于64的数是8;②若a,b互为相反数,ab≠0,则;③若,则的值为负数;④若ab≠0,则的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为()A.0个 B.1个 C.2个 D.3个5.下列长度的三条线段能组成直角三角形的是A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,126.在▱ABCD中,AC平分∠DAB,AB=3,则▱ABCD的周长为()A.6 B.9 C.12 D.157.已知关于x的方程mx2+2x﹣1=0有实数根,则m的取值范围是()A.m≥﹣1 B.m≤1 C.m≥﹣1且m≠0 D.m≤1且m≠08.如图,中,、分别是、的中点,平分,交于点,若,则的长是A.3 B.2 C. D.49.解一元二次方程x2+4x-1=0,配方正确的是()A. B. C. D.10.下列各式从左到右是分解因式的是()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.8m3n=2m3•4nD.t2﹣16+3t=(t+4)(t﹣4)+3t11.如图,在2×2的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为()A. B. C. D.2﹣12.一组数据3、7、2、5、8的中位数是().A.2B.5C.7D.8二、填空题(每题4分,共24分)13.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=_____.14.请你写出一个一次函数,使它经过二、三、四象限_____.15.已知方程组,则x+y的值是____.16.已知点P(-2,1),则点P关于x轴对称的点的坐标是__.17.已知分式,当x__________时,分式无意义?当x____时,分式的值为零?当x=-3时,分式的值为_____________.18.计算:-=________.三、解答题(共78分)19.(8分)学校为了更新体育器材,计划购买足球和篮球共100个,经市场调查:购买2个足球和5个篮球共需600元;购买3个足球和1个篮球共需380元。(1)请分别求出足球和篮球的单价;(2)学校去采购时恰逢商场做促销活动,所有商品打九折,并且学校要求购买足球的数量不少于篮球数量的3倍,设购买足球a个,购买费用W元。①写出W关于a的函数关系式,②设计一种实际购买费用最少的方案,并求出最少费用。20.(8分)已知:如图,在平面直角坐标系中,一次函数的图象分别与轴交于点A、B,点在轴上,若,求直线PB的函数解析式.21.(8分)如图,△ABC中,点P是AC边上一个动点,过P作直线EF∥BC,交∠ACB的平分线于点E,交∠ACB的外角∠ACD平分线于点F.(1)请说明:PE=PF;(2)当点P在AC边上运动到何处时,四边形AECF是矩形?为什么?22.(10分)计算:(1);(2)(﹣1)(+1)+(﹣2)223.(10分)为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:价格甲乙进价(元/件)mm+20售价(元/件)150160如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.(1)求m的值;(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?24.(10分)在△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c.(1)若a=5,b=10,求c的值;(2)若c=,b=1,求a的值.25.(12分)如图,▱ABCD中,,,垂足分别是E,求证:.26.如图,将沿过点的直线折叠,使点落到边上的处,折痕交边于点,连接.(1)求证:四边形是平行四边形;(2)若平分,求证:.
参考答案一、选择题(每题4分,共48分)1、A【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.故选A.考点:函数自变量的取值范围,二次根式和分式有意义的条件.2、C【解析】
根据轴对称图形和中心对称图形的概念即可得出.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误;故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.3、B【解析】试题分析:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,知道中位数即可.故答案选B.考点:中位数.4、B【解析】
根据平方、相反数的定义、绝对值的性质依次判定各项后即可解答.【详解】①平方等于64的数是±8;②若a,b互为相反数,ab≠0,则;③若,可得a≥0,则的值为负数或0;④若ab≠0,当a>0,b>0时,=1+1=2;当a>0,b<0时,=1-1=0;当a<0,b>0时,=-1+1=0;当a<0,b<0时,=-1-1=-2;所以的取值在0,1,2,-2这四个数中,不可取的值是1.综上,正确的结论为②,故选B.【点睛】本题考查了平方的计算、相反数的定义及绝对值的性质,熟练运用相关知识是解决问题的关键.5、A【解析】
利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选A.【点睛】考查勾股定理的逆定理,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.6、C【解析】
首先证得△ADC≌△ABC,由全等三角形的性质易得AD=AB,由菱形的判定定理得▱ABCD为菱形,由菱形的性质得其周长.【详解】解:如图:∵AC平分∠DAB,∴∠DAC=∠BAC.∵四边形ABCD为平行四边形,∴∠B=∠D.在△ADC和△ABC中,∠B=∠D∠BAC=∠DAC∴△ADC≌△ABC,∴AD=AB,∴四边形ABCD为菱形,∴AD=AB=BC=CD=3,∴▱ABCD的周长为:3×4=1.故选:C【点睛】本题主要考查了全等三角形的判定及菱形的判定及性质,找出判定菱形的条件是解答此题的关键.7、A【解析】
分为两种情况,方程为一元一次方程和方程为一元二次方程,分别求出即可解答【详解】解:当m=0时,方程为2x﹣1=0,此方程的解是x=0.5,当m≠0时,当△=22﹣4m×(﹣1)≥0时,方程有实数根,解得:m≥﹣1,所以当m≥﹣1时,方程有实数根,故选A.【点睛】此题考查了一元一次方程和为一元二次方程的解,解题关键在于分情况求方程的解8、A【解析】
利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.【详解】在中,、分别是、的中点,,,平分,...在中,,,.故选.【点睛】本题考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.9、C【解析】
根据一元二次方程的配方法即可求出答案.【详解】∵x2+4x-1=0,
∴x2+4x+4=5,
∴(x+2)2=5,
故选:C.【点睛】此题考查一元二次方程,解题关键是熟练运用一元二次方程的解法.10、B【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、是乘法交换律,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选B.【点睛】本题考查了因式分解的意义,利用因式分解的意义是解题关键.11、D【解析】
由勾股定理求出DE,即可得出CD的长.【详解】解:连接AD,如图所示:∵AD=AB=2,∴DE==,∴CD=2﹣;故选D.【点睛】本题考查勾股定理;由勾股定理求出DE是解题关键.12、B【解析】分析:先从小到大排列,然后找出中间的数即可.详解:从小到大排列:2,3,5,7,8,∴中位数是5.故选B.点睛:本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.二、填空题(每题4分,共24分)13、-1【解析】
根据点A在正比例函数y=mx上,进而计算m的值,再根据y的值随x值的增大而减小,来确定m的值.【详解】解∵正比例函数y=mx的图象经过点A(m,4),∴4=m1.∴m=±1∵y的值随x值的增大而减小∴m=﹣1故答案为﹣1【点睛】本题只要考查正比例函数的性质,关键在于根据函数的y的值随x值的增大而减小,来判断m的值.14、答案不唯一:如y=﹣x﹣1.【解析】
根据已知可画出此函数的简图,再设此一次函数的解析式为:y=kx+b,然后可知:k<0,b<0,即可求得答案.【详解】∵图象经过第二、三、四象限,∴如图所示.设此一次函数的解析式为:y=kx+b,∴k<0,b<0,∴此题答案不唯一:如y=﹣x﹣1.故答案为:答案不唯一:如y=﹣x﹣1.【点睛】本题考查了一次函数的性质.题目难度不大,注意数形结合思想的应用.15、﹣1.【解析】
根据题意,①-②即可得到关于x+y的值【详解】,①﹣②得到:﹣3x﹣3y=6,∴x+y=﹣1,故答案为﹣1.【点睛】此题考查解二元一次方程组,难度不大16、(-2,-1)【解析】
根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案是:(﹣2,﹣1).【点睛】考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.17、-5【解析】
根据分式无意义的条件是分母为0可得第一空,根据分子为0,分母不为0时分式的值为0可得第二空,将的值代入分式中即可求值,从而得出第三空的答案.【详解】根据分式无意义的条件可知,当时,分式无意义,此时;根据分式的值为0的条件可知,当时,分式的值为0,此时;将x的值代入分式中,得;故答案为:.【点睛】本题主要考查分式无意义,分式的值为0以及分式求值,掌握分式无意义,分式的值为0的条件是解题的关键.18、1【解析】
根据算术平方根和立方根定义,分别求出各项的值,再相加即可.【详解】解:因为,所以.故答案为1.【点睛】本题考核知识点:算术平方根和立方根.解题关键点:熟记算术平方根和立方根定义,仔细求出算术平方根和立方根.三、解答题(共78分)19、(1)足球每个100元,篮球每个80元;(2)①W=18a+7200;②足球75个,篮球25个,费用最低,最低费用为8550元【解析】
(1)根据“购买金额=足球数量×足球单价+篮球的数量×篮球单价”,在两种情况下分别列方程,组成方程组,解方程组即可;(2)①设购买足球a个,则购买篮球的数量为(100-a)个,则总费用(W)=足球数量×足球单价×0.9+篮球的数量×篮球单价×0.9,据此列函数式整理化简即可;②
根据购买足球的数量不少于篮球数量的3倍,
且足球的数量不超过总数100,分别列一元一次不等式,组成不等式组,解不等式组求出a的范围;由于W和a的一次函数,k=18>0,W随a增大而增大,随a的减小而减小,所以当a取最小值a时,W值也为最小,从而求出W的最小值,即最低费用.【详解】(1)解:设足球每个x元,篮球每个y元,由题意得解得:答:足球每个100元,篮球每个80元(2)解:①W=100×0.9a+80×0.9(100-a)=18a+7200,答:W关于a的函数关系式为W=18a+7200,②由题意得
,解得:75≤a≤100∵W=18a+7200,W随a的增大而增大,∴a=75时,W最小=18×75+7200=8550元,此时,足球75个,篮球25个,费用最低,最低费用为8550元.【点睛】此题主要考查一次函数的应用,解题的关键是根据题意求出函数关系式,熟知一次函数的图像与性质.20、直线的函数解析式为或.【解析】
根据题意可得P点可在x轴左边或x轴右边,先求出A和B的坐标然后根据,可确定P的位置,进而运用待定系数法可求出直线PB的函数解析式.【详解】解:令,得∴A点坐标为(2,0)令,得∴B点坐标为(0,4)∵∴即∴P点的坐标分别为或设直线的函数解析式为∴或∴或∴直线的函数解析式为或.【点睛】本题考查一次函数待定系数法的运用,综合性较强,解答此类题目的关键是根据三角形面积的关系求出P点的坐标,继而利用待定系数法求解.21、(1)详见解析;(2)当点P在AC中点时,四边形AECF是矩形,理由详见解析.【解析】
(1)首先证明∠E=∠2根据等角对等边可得EP=PC,同理可得PF=PC,进而得到EP=PF;(2)当点P在AC中点时,四边形AECF是矩形,首先根据对角线互相平分的四边形是平行四边形可得四边形AECF是平行四边形,再证明∠ECF=90°即可.【详解】(1)∵CE平分∠BCA,∴∠1=∠2,∵EF∥BC,∴∠E=∠1,∴∠E=∠2,∴EP=PC,同理PF=PC,∴EP=PF;(2)结论:当点P在AC中点时,四边形AECF是矩形,理由:∵PA=PC,PE=PF,∴四边形AECF是平行四边形,∵∠1=∠2,∠3=∠4,∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,即∠ECF=90°,∴平行四边形AECF是矩形.【点睛】本题考查了等腰三角形的判定与性质,平行四边形的判定,矩形的判定,熟练掌握相关知识是解题的关键.22、(1);(2)8-【解析】
(1)根据二次根式的混合运算法则进行计算即可.(2)利用完全平方公式和平方差公式进行计算即可.【详解】(1)原式=3++2﹣=3+2+=;(2)原式=2﹣1+3﹣4+4=8﹣4.【点睛】此题考查二次根式的混合运算,解题关键在于利用平方差公式和完全平方公式进行计算.23、(1)m=100(2)两种方案【解析】
(1)用总价除以单价表示出购进童装的数量,根据两种童装的数量相等列出方程求解即可;(2)设购进甲种童装x件,表示出乙种童装(200-x)件,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据童装的件数是正整数解答;设总利润为W,表示出利润,求得最值即可.【详解】(1)根据题意可得:,解得:m=100,经检验m=100是原方程的解;(2)设甲种童装为x件,可得:,解得:98≤x<100,因为x取整数,所以有两种方案:方案一:甲98,乙102;方案二:甲99,乙101;【点睛】本题考查了分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理学学硕士答辩
- 幼儿园医学知识讲座
- 机动车故障排查服务合同
- 校园食堂合同范本
- 定期市场报告合作合同
- 小学部编版语文六年级下册第一单元《习作:家乡的风俗》说课课件(含教学反思)
- 2025年统编版小学道德与法治二年级下册《传统游戏我会玩》说课课件
- 产品采购协议补充协议
- 化学品认知与防护培训
- 阿坝师范学院《基础医学实验技术》2023-2024学年第二学期期末试卷
- 广东省广州市2024年中考数学真题试卷(含答案)
- 蜘蛛开店第二课时 教案
- 模拟试卷:2023-2024学年八年级下学期语文期中模拟考试(考试版A4)【测试范围:1-3单元】(广东深圳专用)
- TC04墙材《固体废弃物再生高强轻骨料》-编制说明(征求意见稿)
- 零星维修工程投标方案(技术方案)
- DBJ04∕T 390-2019 基坑工程装配式钢支撑技术标准
- 人教版(PEP)英语2023年小升初模拟卷(含答案)
- 尾货销售合同范本
- 佛山市2023-2024学年高二下学期7月期末英语试题(解析版)
- 人教版数学四年级下册3运算定律《解决问题策略的多样性》说课稿
- GB 31825-2024制浆造纸单位产品能源消耗限额
评论
0/150
提交评论