2024届黑龙江省牡丹江一中学八年级数学第二学期期末达标检测模拟试题含解析_第1页
2024届黑龙江省牡丹江一中学八年级数学第二学期期末达标检测模拟试题含解析_第2页
2024届黑龙江省牡丹江一中学八年级数学第二学期期末达标检测模拟试题含解析_第3页
2024届黑龙江省牡丹江一中学八年级数学第二学期期末达标检测模拟试题含解析_第4页
2024届黑龙江省牡丹江一中学八年级数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省牡丹江一中学八年级数学第二学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.将五个边长都为2的正方形按如图所示摆放,点分别是四个正方形的中心,则图中四块阴影面积的和为()A.2 B.4 C.6 D.82.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交于点C、点D.若DB=DC,则直线CD的函数解析式为()A.y=-2x-2 B.y=-2x+2 C.y=-x-2 D.y=2x-23.菱形OBCA在平面直角坐标系中的位置如图所示,点C的坐标是8,0,点A的纵坐标是2,则点B的坐标是()A.4,2 B.4,-2 C.2,-6 D.2,64.如图,在Rt△ABC中,∠ACB=90˚,D,E,F分别是AB,AC,AD的中点,若AB=8,则EF的长是()A.1 B.2 C.3 D.5.下列说法中正确的是()A.四边相等的四边形是正方形B.一组对边相等且另一组对边平行的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线相等的平行四边形是矩形6.如图,在△ABC中,∠ACB=90°,分别以AB、BC、AC为底边在△ABC外部画等腰直角三角形,三个等腰直角三角形的面积分别是S1、S2、S3,则S1、S2、S3之间的关系是()A. B. C. D.7.如图,点A,B分别在函数y=(k1>0)与函数y=(k2<0)的图象上,线段AB的中点M在x轴上,△AOB的面积为4,则k1﹣k2的值为()A.2 B.4 C.6 D.88.在某校举行的“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.众数 B.方差 C.中位数 D.平均数9.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,) C.(,) D.(,4)10.如图,在中,下列结论错误的是()A. B. C. D.11.若二次根式有意义,则的取值范围是()A. B. C. D.12.在矩形ABCD中,AB=3,BC=4,E是BC上一点,且与B、C不重合,若AE是整数,则AE等于()A.3 B.4 C.5 D.6二、填空题(每题4分,共24分)13.将直线y=﹣2x﹣2向上平移5个单位后,得到的直线为_____.14.观察下列各式,并回答下列问题:①;②;③;……(1)写出第④个等式:________;(2)将你猜想到的规律用含自然数的代数式表示出来,并证明你的猜想.15.将直线平移后经过点(5,),则平移后的直线解析式为______________.16.已知在等腰梯形中,,,对角线,垂足为,若,,梯形的高为______.17.如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为_____.18.一个纳米粒子的直径是0.000000035米,用科学记数法表示为______米.三、解答题(共78分)19.(8分)大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.(1)某选手第一次转到了数字5,再转第二次,则他两次数字之和为100的可能性有多大?(2)现在某选手第一次转到了数字65,若再转第二次了则有可能“爆掉”,请你分析“爆掉”的可能性有多大?20.(8分)(1)如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是________;(2)根据下面四个算式:5232=(5+3)×(53)=8×2;11252=(11+5)×(115)=16×6=8×12;15232=(15+3)×(153)=18×12=8×27;19272=(19+7)×(197)=26×12=8×1.请你再写出两个(不同于上面算式)具有上述规律的算式;(3)用文字写出反映(2)中算式的规律,并证明这个规律的正确性.21.(8分)先阅读材料:分解因式:.解:令,则所以.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:__________;(2)分解因式:;(3)证明:若为正整数,则式子的值一定是某个整数的平方.22.(10分)如图,在平行四边形ABCD中,过点A作对角线BD的垂线,垂足为E,点F为AD的中点,连接FE并延长交BC于点G.(1)求证:;(2)若,,,求BG的长.23.(10分)问题情境:平面直角坐标系中,矩形纸片OBCD按如图的方式放置已知,,将这张纸片沿过点B的直线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.数学探究:点C的坐标为______;求点E的坐标及直线BE的函数关系式;若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?若存在,直接写出相应的点Q的坐标;若不存在,说明理由.24.(10分)小明八年级下学期的数学成绩如下表所示:(1)计算小明该学期的平时平均成绩.(2)如果按平时占20%,期中占30%,期末占50%计算学期的总评成绩.请计算出小明该学期的总评成绩.25.(12分)如图,折叠长方形ABCD的一边AD,使点D落在BC上的点F处,已知AB=8,BC=10,求EC.26.如图,四边形的对角线,交于点,、是上两点,,,.(1)求证:四边形是平行四边形.(2)当平分时,求证:.

参考答案一、选择题(每题4分,共48分)1、B【解析】

连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.【详解】解:如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,∵∠PAF+∠FAN=∠FAN+∠NAE=90°,∴∠PAF=∠NAE,∴△PAF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,而正方形的面积为4,∴四边形AENF的面积为1cm1,四块阴影面积的和为4cm1.故选B.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.2、A【解析】

先求出直线AB的解析式,再根据BD=DC计算出平移方式和距离,最后根据平移的性质求直线CD的解析式.【详解】设直线AB的解析式为y=kx+b,∵A(0,2)、点B(1,0)在直线AB上,∴2=b0=k+b,解得b=2∴直线AB的解析式为y=−2x+2;∵BD=DC,∴△BCD为等腰三角形又∵AD⊥BC,∴CO=BO(三线合一),∴C(-1,0)即B点向左平移两个单位为C,也就是直线AB向左平移两个单位得直线CD∴平移以后的函数解析式为:y=−2(x+2)+2,化简为y=-2x-2故选A.【点睛】本题考查一次函数图象与几何变换,解决本题要会根据图像上的点求一次函数解析式和利用平移的性质得出平移后函数解析式,能根据BD=DC计算出平移方向和距离是解决本题的关键.3、B【解析】

连接AB交OC于点D,由菱形OACB中,根据菱形的性质可得OD=CD=4,BD=AD=2,由此即可求得点B的坐标.【详解】∵连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(8,0),点A的纵坐标是2,∴OC=8,BD=AD=2,∴OD=4,∴点B的坐标为:(4,-2).故选B.【点睛】本题考查了菱形的性质与点与坐标的关系.熟练运用菱形的性质是解决问题的关键,解题时注意数形结合思想的应用.4、B【解析】

利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.【详解】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=1.故选:B.【点睛】本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.5、D【解析】

正方形:有一个角是直角且有一组邻边相等的平行四边形.平行四边形:有两组对边分别平行的四边形.菱形:在一个平面内,有一组邻边相等的平行四边形.矩形:有一个角是直角的平行四边形,矩形也叫长方形.【详解】A选项中四边相等的四边形不能证明是正方形,有可能是菱形.则A错误.B选项一组对边相等且另一组对边平行的四边形不一定是平行四边形,有可能是等腰梯形,所以B错误.C选项中,对角线互相垂直,不能判定四边形是菱形.根据正方形、平行四边形、菱形、矩形的性质与判定,即可得出本题正确答案为D.【点睛】本题的关键在于:熟练掌握正方形、平行四边形、菱形、矩形的性质与判定.6、B【解析】

根据勾股定理可得AB2=AC2+BC2,再根据等腰直角三角形的性质和三角形的面积公式计算,即可得到答案.【详解】解:如图,在Rt△ABC中,由勾股定理,得:AB2=AC2+BC2,∵△ABF、△BEC、△ADC都是等腰直角三角形,∴S1=AF2=AB2,S2=EC2=BC2,S3=AD2=AC2,∴S2+S3=BC2+AC2=(BC2+AC2)=AB2,∴S2+S3=S1.故选:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理以及三角形的面积等知识,属于基本题型,熟练掌握勾股定理和等腰直角三角形的性质是解题关键.7、D【解析】

过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D,然后根据平行与中点得出OC=OD,设点A(a,d),点B(b,﹣d),代入到反比例函数中有k1=ad,k2=﹣bd,然后利用△AOB的面积为4得出ad+bd=8,即可求出k1﹣k2的值.【详解】过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D∴AC∥BD∥x轴∵M是AB的中点∴OC=OD设点A(a,d),点B(b,﹣d)代入得:k1=ad,k2=﹣bd∵S△AOB=4∴整理得ad+bd=8∴k1﹣k2=8故选:D.【点睛】本题主要考查反比例函数与几何综合,能够根据△AOB的面积为4得出ad+bd=8是解题的关键.8、C【解析】

由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义解答即可.【详解】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从大到小排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了;故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9、C【解析】

利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(1,),∴AE=,OE=1.由等腰三角形底边上的三线合一得OB=1OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得,即,∴O′F=.在Rt△O′FB中,由勾股定理可求BF=,∴OF=.∴O′的坐标为().故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.10、D【解析】

根据平行四边形的对边平行和平行线的性质即可一一判断.【详解】∵四边形ABCD是平行四边形,

∴AB=CD,∠BAD=∠BCD,(平行四边形的对边相等,对角相等)故B、C正确.

∵四边形ABCD是平行四边形,

∴AB∥BC,

∠1=∠2,故A正确,

故只有∠1=∠3错误,

故选:D.【点睛】此题考查平行四边形的性质,解题关键在于掌握平行四边形的对边相等;平行四边形的对角相等;平行四边形的对边平行.11、C【解析】试题分析:由题意得,,解得.故选C.考点:二次根式有意义的条件.12、B【解析】

由勾股定理可求AC的长,即可得AE的范围,则可求解.【详解】解:连接AC,∵在矩形ABCD中,AB=3,BC=4∴AC==5∴E是BC上一点,且与B、C不重合∴3<AE<5,且AE为整数∴AE=4故选B.【点睛】本题考查了矩形的性质,勾股定理,熟练运用矩形的性质是本题的关键.二、填空题(每题4分,共24分)13、y=﹣2x+3【解析】

一次函数图像,即直线平移的原则是:上加下减,左加右减,据此即可求解.【详解】将直线y=﹣2x﹣2向上平移5个单位,得到直线y=﹣2x﹣2+5,即y=﹣2x+3;故答案为:y=﹣2x+3;【点睛】该题主要考查了一次函数图像,即直线平移的方法:上加下减,左加右减,准确掌握平移的原则即可解题.14、(1);(2)猜想:【解析】

(1)此题应先观察列举出的式子,可找出它们的一般规律,直接写出第④个等式即可;(2)找出它们的一般规律,用含有n的式子表示出来,证明时,将等式左边被开方数进行通分,把被开方数的分子开方即可.【详解】(1)1)观察列举出的式子,可找出它们的一般规律,直接写出第④个等式:故答案为:(2)猜想:用含自然数的代数式可表示为:证明:左边右边,所以猜想正确.【点睛】本题主要考查学生把特殊归纳到一般的能力及二次根式的化简,解题的关键是仔细观察,找出各式的内在联系解决问题.15、y=2x-1【解析】

根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=2x+b.

把(5,1)代入直线解析式得1=2×5+b,

解得

b=-1.

所以平移后直线的解析式为y=2x-1.

故答案为:y=2x-1.【点睛】本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.16、【解析】

过作交的延长线于,构造.首先求出是等腰直角三角形,从而推出与的关系.【详解】解:如图:过作交的延长线于,过作于.,,四边形是平行四边形,,,等腰梯形中,,,,,,是等腰直角三角形,,又,,即梯形的高为.故答案为:.【点睛】本题考查了等腰梯形性质,作对角线的平行线将上下底和对角线移到同一个三角形中是解题的关键,也是梯形辅助线常见作法.17、2【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=(AC+CP),∴OC=CE=(AC+CP),当AC=2,CP=CD=1时,OC=×(2+1)=,当AC=2,CP=CB=5时,OC=×(2+5)=,∴当P从点D出发运动至点B停止时,点O的运动路径长=-=2.故答案为2.点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.18、3.5×10-1.【解析】

绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000

000

035=3.5×10-1.

故答案为:3.5×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题(共78分)19、(1);(2).【解析】试题分析:(1)求出第二次转到95的可能性,即为两次数字之和为100的可能性;(2)求出转到数字在35以上的总个数,利用所求情况数(35以上的总个数)与总情况数(20)作比即可.(1)由题意分析可得:要使他两次数字之和为100,则第二次必须转到95,因为总共有20个数字,所以他两次数字之和为100的可能性为

.(2)由题意分析可得:转到数字35以上就会“爆掉”,共有13种情况,因为总共有20个数字,所以“爆掉”的可能性为.点睛:本题考查了可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.20、(1)a2-b2=(a+b)(ab);(2)72-52=8×3;92-32=8×9等;(3)规律:任意两个奇数的平方差是8的倍数,证明见解析【解析】

(1)利用两个图形,分别求出阴影部分的面积,即可得出关系式;

(2)任意写出两个奇数的平方差,右边写出8的倍数的形式即可;

(3)两个奇数的平方差一定能被8整除;任意写一个即可,如:(2n+1)2-(2n-1)2=8n.【详解】解:(1)图甲的阴影部分的面积为:a2-b2,图乙平行四边形的底为(a+b),高为(a-b),因此面积为:(a+b)(a-b),

所以a2-b2=(a+b)(a-b),

故答案为:a2-b2=(a+b)(a-b);

(2)32-12=(3+1)×(3-1)=4×2=8×1,

172-52=(17+5)×(17-5)=22×12=8×33,

(3)两个奇数的平方差一定能被8整除;

设较大的奇数为(2n+1)较小的奇数为(2n-1),

则,(2n+1)2-(2n-1)2=[(2n+1)+(2n-1)][(2n+1)-(2n-1)]=8n,

∴(2n+1)2-(2n-1)2=8n.即:任意两个奇数的平方差是8的倍数【点睛】本题考查平方差公式及其应用,掌握平方差公式的结构特征是正确应用的前提.21、(1);(2);(3)证明见解析.【解析】

(1)令,根据材料中的解题过程和完全平方公式因式分解即可;(2)令,根据材料中的解题过程和完全平方公式因式分解即可;(3)根据多项式乘多项式法则和完全平方公式因式分解,即可得出结论.【详解】解:(1)令,则所以.(2)令,则,所以.(3).∵是正整数,∴也为正整数.∴式子的值一定是某一个整数的平方.【点睛】此题考查的是因式分解,掌握利用“整体思想”和完全平方公式因式分解是解决此题的关键.22、(1)见解析;(2).【解析】

(1)由直角三角形斜边中线定理,得到EF=DF,然后得到∠FED=∠FDE,利用平行线的性质和对顶角相等,得到∠EBG=∠BEG,从而得到BG=GE.(2)由平行四边形和平行线的性质,可以得到△ABE为等腰直角三角形,根据计算得AE=BE=3,又AF=EF=3,可得△AEF为等边三角形,则∠EAD=60°,从而得到∠EBG=∠ADE=30°,进而得到BG的长度.【详解】解:(1)证明:∵∴∵点F是AD的中点∴∴∵四边形ABCD是平行四边形∴∴∵∴∴(2)∵四边形ABCD是平行四边形∴,∴∵∴∴∴由(1)可得,∴是等边三角形∴∴∴;【点睛】本题考查了等腰三角形判定和性质,直角三角形斜边中线定理,以及含30°角的直角三角形的性质,解题的关键是熟练掌握含30°角的直角三角形的角度和边长的计算问题.23、(1)(10,6);(2)),;(3)见解析.【解析】

(1)根据矩形性质可得到C的坐标;(2)设,由折叠知,,,在中,根据勾股定理得,,,在中,根据勾股定理得,,即,解得,可得;由待定系数法可求直线BE的解析式;(3)存在,理由:由知,,

,设,分两种情况分析:当BQ为的对角线时;当BQ为边时.【详解】解:四边形OBCD是矩形,

,,

故答案为;

四边形OBCD是矩形,

,,,

设,

由折叠知,,,

在中,根据勾股定理得,,

在中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论