四川省甘孜市2024年数学八年级下册期末质量跟踪监视模拟试题含解析_第1页
四川省甘孜市2024年数学八年级下册期末质量跟踪监视模拟试题含解析_第2页
四川省甘孜市2024年数学八年级下册期末质量跟踪监视模拟试题含解析_第3页
四川省甘孜市2024年数学八年级下册期末质量跟踪监视模拟试题含解析_第4页
四川省甘孜市2024年数学八年级下册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省甘孜市2024年数学八年级下册期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,设甲图中阴影部分的面积为S1,乙图中阴影部分的面积为S2,k=(a>b>0),则有()A.k>2 B.1<k<2 C.<k<1 D.0<k<2.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=A.40° B.50°C.60° D.75°3.生物学家发现了一种病毒,其长度约为,将数据0.00000032用科学记数法表示正确的是()A. B. C. D.4.下列图形中既是轴对称图形又是中心对称图形的是().A. B. C. D.5.如图,以原点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为()A.5 B.-5 C.5-2 D.2-56.在平面直角坐标系中,点向上平移2个单位后的对应点的坐标为()A. B. C. D.7.在平面直角坐标系中,若点Mm,n与点Q-2,3关于原点对称,则点Pm+n,n在A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若代数式在实数范围内有意义,则a的取值范围是()A.a≠0 B.a>2 C.a≥2 D.a≥2且a≠09.若分式的值为0,则x的值是()A.2 B.0 C.﹣2 D.任意实数10.若二次根式在实数范围内有意义,则a的取值范围是()A.a>1 B.a≥1 C.a=1 D.a≤111.正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.-2 C.4 D.-412.已知y是x的正比例函数,且函数图象经过点,则在此正比例函数图象上的点是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,直线y=kx+b与直线y=2x交于点P(1,m),则不等式2x<kx+b的解集为______.14.一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.16.如图,矩形中,,将矩形绕点顺时针旋转,点分别落在点处,且点在同一条直线上,则的长为__________.17.如果两个最简二次根式与能合并,那么______.18.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是,,,,在本次射击测试中,成绩最稳定的是_____.三、解答题(共78分)19.(8分)已知一次函数的图象经过,两点.(1)求这个一次函数的解析式;(2)试判断点是否在这个一次函数的图象上;(3)求此函数图象与轴,轴围成的三角形的面积.20.(8分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为27821.(8分)如图,平面直角坐标系中,直线AB交y轴于点A(0,1),交x轴于点B(3,0).直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,在点D的上方,设P(1,n).(1)求直线AB的解析式;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.22.(10分)如图,在平行四边形ABCD中,点E、F在对角线BD上,且BF=DE(1)求证:△ADE≌△CBF.(2)若AE=3,AD=4,∠DAE=90°,该判断当BE的长度为多少时,四边形AECF为菱形,并说明理由.23.(10分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子的长为13米,此人以0.5米/秒的速度收绳,6秒后船移动到点的位置,问船向岸边移动了大约多少米?(假设绳子是直的,结果精确到0.1米,参考数据:,)24.(10分)已知求代数式:x=2+,y=2-.(1)求代数式x2+3xy+y2的值;(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?25.(12分)再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示;MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.26.列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据正方形和矩形的面积公式分别表示出两个阴影部分面积,即可求出所求.【详解】由题意得:甲图中阴影部分的面积为,乙图中阴影部分的面积为故选:B.【点睛】本题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2、B【解析】分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.详解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中,∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°-∠1=50°.故选B.点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.3、B【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000032=3.2×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、B【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;

B、是轴对称图形,也是中心对称图形,故此选项正确;

C、是轴对称图形,不是中心对称图形,故此选项错误;

D、不是轴对称图形,是中心对称图形,故此选项错误;

故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、B【解析】

根据勾股定理列式求出x2,再利用平方根的相反数定义解答.【详解】由图可知,x2=12+22=5,

则x1=−5,x2=5(舍去).

故选:B.【点睛】考查了实数与数轴,主要是数轴上无理数的作法,需熟练掌握.6、B【解析】

根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【详解】解:把点A(﹣4,﹣3)向上平移2个单位后的对应点A1的坐标为(﹣4,﹣3+2),即(﹣4,﹣1),故选:B.【点睛】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.7、C【解析】

直接利用关于关于原点对称点的性质得出m,n的值,进而得出答案.【详解】解:∵点M(m,n)与点Q(−2,3)关于原点对称,∴m=2,n=−3,则点P(m+n,n)为(−1,−3),在第三象限.故选:C.【点睛】此题主要考查了关于原点对称的点的性质,正确得出m,n的值是解题关键.8、C【解析】

根据二次根式的被开方数是非负数,且分母不为0即可解答.【详解】解:∵代数式在实数范围内有意义,∴a﹣1≥0,a≠0,解得:a≥1.故选C.【点睛】本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9、A【解析】

根据分式值为0的条件进行求解即可.【详解】由题意x-2=0,解得:x=2,故选A.【点睛】本题考查了分式值为0的条件,熟知“分式值为0的条件是分子为0且分母不为0”是解题的关键.10、B【解析】

根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.11、B【解析】

直接根据正比例函数的性质和待定系数法求解即可.【详解】把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=-2,故选B.【点睛】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.12、D【解析】

利用待定系数法可求出正比例函数解析式,再利用一次函数图象上点的坐标特征可找出点(-4,6)在此正比例函数图象上,此题得解.【详解】解:设正比例函数解析式为y=kx(k≠0).∵正比例函数图象经过点(4,-6),∴-6=4k,∴.∵当x=-4时,y=x=6,∴点(-4,6)在此正比例函数图象上.故选D.【点睛】本题考查了待定系数法求正比例函数解析式以及一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.二、填空题(每题4分,共24分)13、x<1【解析】

根据两直线的交点坐标和函数的图象即可求出答案.【详解】∵直线y1=kx+b与直线y2=2x交于点P(1,m),

∴不等式2x<kx+b的解集是x<1,

故答案是:x<1.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14、x>-2【解析】试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.考点:一次函数与一元一次不等式.15、3或1.【解析】

当为直角三角形时,有两种情况:①当点落在矩形内部时,如答图1所示.连结,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点、、共线,即沿折叠,使点落在对角线上的点处,则,,可计算出,设,则,,然后在中运用勾股定理可计算出.②当点落在边上时,如答图2所示.此时四边形为正方形.【详解】解:当为直角三角形时,有两种情况:①当点落在矩形内部时,如答图1所示.连结,在中,,,,沿折叠,使点落在点处,,当为直角三角形时,只能得到,点、、共线,即沿折叠,使点落在对角线上的点处,如图,,,,设,则,,在中,,,解得,;②当点落在边上时,如答图2所示.此时为正方形,.综上所述,的长为3或1.故答案为:3或1.【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.16、【解析】

根据平行的性质,列出比例式,即可得解.【详解】设的长为根据题意,得∴又∵∴∴解得(不符合题意,舍去)∴的长为.【点睛】此题主要考查矩形的性质,关键是列出关系式,即可解题.17、1【解析】

∵两个最简二次根式能合并,∴,解得:a=1.故答案为1.18、丙【解析】

根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.90,1.22,0.43,1.68,∴S2丙<S2甲<S2乙<S2丁,∴成绩最稳定的同学是丙.【点睛】本题考查方差的意义,方差越大,数据的波动越大;方差越小,数据波动越小,学生们熟练掌握即可.三、解答题(共78分)19、(1);(2)不在这个一次函数的图象上;(3)函数图象与轴,轴围成的三角形的面积=4.【解析】

(1)利用待定系数法求一次函数解析式;(2)利用一次函数图象上点的坐标特征进行判断;(3)先利用一次函数解析式分别求出一次函数与坐标轴的两交点坐标,然后利用三角形面积公式求解.【详解】(1)设一次函数解析式为,把,代入得,解得,所以一次函数解析式为;(2)当时,,所以点不在这个一次函数的图象上;(3)当时,,则一次函数与轴的交点坐标为,当时,,解得,则一次函数与轴的交点坐标为,所以此函数图象与轴,轴围成的三角形的面积.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.20、(1)k=34;(2)△OPA的面积S=94x+18(﹣8<x<0);(3)点P坐标为(-132,98)或(-19【解析】

(1)将点E坐标(﹣8,0)代入直线y=kx+6就可以求出k值,从而求出直线的解析式;(2)由点A的坐标为(﹣6,0)可以求出OA=6,求△OPA的面积时,可看作以OA为底边,高是P点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出△OPA.从而求出其关系式;根据P点的移动范围就可以求出x的取值范围.(3)分点P在x轴上方与下方两种情况分别求解即可得.【详解】(1)∵直线y=kx+6过点E(﹣8,0),∴0=﹣8k+6,k=34(2)∵点A的坐标为(﹣6,0),∴OA=6,∵点P(x,y)是第二象限内的直线上的一个动点,∴△OPA的面积S=12×6×(34x+6)=(3)设点P的坐标为(m,n),则有S△AOP=12即62解得:n=±98当n=98时,98=34x+6,解得此时点P在x轴上方,其坐标为(-132,当n=-98时,-98=34x+6,解得此时点P在x轴下方,其坐标为(-192,综上,点P坐标为:(-132,98)或(-【点睛】本题考查了待定系数法、三角形的面积、点坐标的求法,熟练掌握待定系数法、正确找出各量间的关系列出函数解析式,分情况进行讨论是解题的关键.21、(1)y=x+1;(2);(3)点C的坐标是(3,4)或(5,2)或(3,2).【解析】

(1)把的坐标代入直线的解析式,即可求得的值,然后在解析式中,令,求得的值,即可求得的坐标;(2)利用即可求出结果;(3)分三种情况讨论,当、、分别为等腰直角三角形的直角顶点时,求出点的坐标分别为、、。【详解】(1)设直线AB的解析式是y=kx+b把A(0,1),B(3,0)代入得:解得:∴直线AB的解析式是:(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,=,P在点D的上方,∴PD=n﹣,由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴,∴;(3)当S△ABP=2时,,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2,∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).3种情况,如图3,∠PCB=90°,∴∠CPB=∠EBP=45°,∴△PCB≌△BEP,∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,综上所述点C的坐标是(3,4)或(5,2)或(3,2).【点睛】本题考核知识点:本题主要考查一次函数的应用和等腰三角形的性质.解题关键点:掌握一次函数和等腰三角形性质,运用分类思想.22、(1)证明见解析;(2)BE的长度为时,四边形AECF为菱形.【解析】

(1)由平行四边形的性质可得∠ADE=∠CBF,AD=BC,利用SAS即可证明△ADE≌△CBF;(2)连接AC,设BE=x,AC、EF相交于O,利用勾股定理可求出DE的长,即可用x表示出OE和OB的长,由菱形的性质可得AC⊥EF,即可证明平行四边形ABCD是菱形,可得AB=AD=4,在Rt△AOB和Rt△AOE中,分别利用勾股定理表示出OA2,列方程求出x的值即可得答案.【详解】(1)∵平行四边形ABCD,∴AD//BC,∴∠∠ADE=∠CBF,AD=BC,又∵BF=DE,∴△ADE≌△CBF.(2)BE的长度为时,四边形AECF为菱形.理由如下:连接AC,设BE=x,AC、EF相交于O,∵AE=3,AD=4,∠DAE=90°,∴BF=DE==5,∴OE=,OB=,∵四边形AECF为菱形,∴AC⊥EF,∴平行四边形ABCD是菱形,∴AB=AD=4,在Rt△AOB和Rt△AOE中,OA2=AB2-OB2=AE2-OE2,即42-()2=32-()2,解得:x=.∴BE的长度为时,四边形AECF为菱形.【点睛】本题考查了全等三角形的判定、菱形的判定与性质,根据对角线互相垂直的平行四边形是菱形,得出平行四边形ABCD是菱形,进而求出AB的长是解题关键.23、船向岸边移动了大约3.3m.【解析】

由题意可求出CD长,在中分别用勾股定理求出AD,AB长,作差即可.【详解】解:∵在中,,,,∴.∵此人以0.5m/s的速度收绳,6s后船移动到点D的位置,∴.∴.∴.答:船向岸边移动了大约3.3m.【点睛】本题是勾股定理的应用,灵活运用勾股定理求线段长是解题的关键,24、(1)18;(2)1.【解析】(1)求出x+y,xy的值,利用整体的思想解决问题;(2)根据菱形的面积等于对角线乘积的一半计算即可.解:(1)∵x=,y=,∴x+y=4,xy=4-2=2∴x2+3xy+y2=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论