![2024年广东省茂名市茂南区八年级数学第二学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view3/M02/1A/26/wKhkFmYWs56ATJ8JAAHrdKm3VEY027.jpg)
![2024年广东省茂名市茂南区八年级数学第二学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view3/M02/1A/26/wKhkFmYWs56ATJ8JAAHrdKm3VEY0272.jpg)
![2024年广东省茂名市茂南区八年级数学第二学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view3/M02/1A/26/wKhkFmYWs56ATJ8JAAHrdKm3VEY0273.jpg)
![2024年广东省茂名市茂南区八年级数学第二学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view3/M02/1A/26/wKhkFmYWs56ATJ8JAAHrdKm3VEY0274.jpg)
![2024年广东省茂名市茂南区八年级数学第二学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view3/M02/1A/26/wKhkFmYWs56ATJ8JAAHrdKm3VEY0275.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年广东省茂名市茂南区八年级数学第二学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m2.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米3.若kb<0,则一次函数的图象一定经过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限4.如图,▱ABCD的对角线AC,BD交于点O,已知,,,则的周长为A.13 B.17 C.20 D.265.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. B.1,C.6,7,8 D.2,3,46.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图1.两次旋转的角度分别为()A.45°,90° B.90°,45° C.60°,30° D.30°,60°7.在直角三角形中,两条直角边长分别为2和3,则其斜边长为()A. B. C.或 D.或8.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A.1 B.2 C.3 D.49.=()A.4 B.2 C.﹣2 D.±210.某校八年级(2)班第一组女生的体重(单位:):35,36,36,42,42,42,45,则这组数据的众数为()A.45 B.42 C.36 D.35二、填空题(每小题3分,共24分)11.化简;÷(﹣1)=______.12.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=,∠AEO=120°,则FC的长度为_____.13.若一组数据1,3,,5,4,6的平均数是4,则这组数据的中位数是__________.14.计算:__.15.已知a﹣2b=10,则代数式a2﹣4ab+4b2的值为___.16.如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.17.汽车开始行驶时,油箱中有油40L,如果每小时耗油5L,则油箱内余油量y(L)与行驶时间x(h)的关系式为_____.18.已知y+2和x成正比例,当x=2时,y=4,则y与x的函数关系式是______________.三、解答题(共66分)19.(10分)如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE,⑴求证:四边形AECF是菱形.⑵若AB=2,BF=1,求四边形AECF的面积.20.(6分)如图,点D是△ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点。(1)求证:四边形EFGH是平行四边形;(2)已知AD=6,BD=4,CD=3,∠BDC=90°,求四边形EFGH的周长。21.(6分)《九章算术》卷九“勾股”中记载:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问霞长几何.注释:今有正方形水池边长1丈,芦苇生长在中央,长出水面1尺.将芦苇向池岸牵引,恰好与水岸齐,问芦苇的长度(一丈等于10尺).解决下列问题:(1)示意图中,线段的长为______尺,线段的长为______尺;(2)求芦苇的长度.22.(8分)正方形中,点是上一点,过点作交射线于点,连结.(1)已知点在线段上.①若,求度数;②求证:.(2)已知正方形边长为,且,请直接写出线段的长.23.(8分)解方程(1)+=3(2)24.(8分)在正方形ABCD中,点P是直线BC上一点.连接AP,将线段PA绕点P顺时针旋转90°,得到线段PE,连接CE.(1)如图1.若点P在线段CB的延长线上过点E作EF⊥BC于H.与对角线AC交于点F.①请仔细阅读题目,根据题意在图上补全图形;②求证:EF=FH.(2)若点P在射线BC上,直接写出CE,CP,CD三条线段之间的数量关系(不必写过程).25.(10分)定义:任意两个数,,按规则得到一个新数,称所得的新数为数,的“传承数.”(1)若,,求,的“传承数”;(2)若,,且,求,的“传承数”;(3)若,,且,的“传承数”值为一个整数,则整数的值是多少?26.(10分)已知矩形中,两条对角线的交点为.(1)如图1,若点是上的一个动点,过点作于点,于点,于点,试证明:;(2)如图②,若点在的延长线上,其它条件和(1)相同,则三者之间具有怎样的数量关系,请写出你的结论并证明.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:连接OA,根据垂径定理可得AB=2AD,根据题意可得:OA=5m,OD=CD-OC=8-5=3m,根据勾股定理可得:AD=4m,则AB=2AD=2×4=8m.考点:垂径定理.2、B【解析】
由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.【详解】已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.【点睛】本题考查多边形内角与外角,熟记公式是关键.3、D【解析】
根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【详解】∵kb<0,∴k、b异号。①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。故选:D【点睛】此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系4、B【解析】
由平行四边形的性质得出,,,即可求出的周长.【详解】四边形ABCD是平行四边形,,,,的周长.故选:B.【点睛】本题主要考查了平行四边形的性质,并利用性质解题平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分.5、B【解析】试题解析:A.()2+()2≠()2,故该选项错误;B.12+()2=()2,故该选项正确;C.62+72≠82,故该选项错误;D.22+32≠42,故该选项错误.故选B.考点:勾股定理.6、A【解析】本题考查了旋转的性质、等腰直角三角形的性质.图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图1中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图1.故选A.7、B【解析】
根据勾股定理计算即可.【详解】由勾股定理得,其斜边长=,故选B.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.8、B【解析】
试题分析:由四边形ABCD是矩形与AB=6,△ABF的面积是14,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,继而求得答案.解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,∵AB=6,∴S△ABF=AB•BF=×6×BF=14,∴BF=8,∴AF===10,由折叠的性质:AD=AF=10,∴BC=AD=10,∴FC=BC﹣BF=10﹣8=1.故选B.考点:翻折变换(折叠问题).9、B【解析】
根据算术平方根,即可解答.【详解】==2,故选B.【点睛】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.10、B【解析】
出现次数最多的数是1.故众数是1.【详解】解:出现次数最多的数是1.故众数是1.故答案:B【点睛】注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.二、填空题(每小题3分,共24分)11、-【解析】
直接利用分式的混合运算法则即可得出.【详解】原式,,,.故答案为.【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.12、1【解析】
先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.【详解】解:∵EF⊥BD,∠AEO=120°,
∴∠EDO=30°,∠DEO=60°,
∵四边形ABCD是矩形,
∴∠OBF=∠OCF=30°,∠BFO=60°,
∴∠FOC=60°-30°=30°,
∴OF=CF,
又∵Rt△BOF中,BO=BD=AC=,
∴OF=tan30°×BO=1,
∴CF=1,
故答案为:1.【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.13、4.5【解析】
根据题意可以求得x的值,从而可以求的这组数据的中位数.【详解】解:∵数据1、3、x、5、4、6的平均数是4,∴解得:x=5,则这组数据按照从小到大的顺序排列为:1,3,4,5,5,6则中位数为故答案为:4.5【点睛】本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.14、-【解析】
直接利用二次根式的性质分别计算得出答案.【详解】解:原式.故答案为:.【点睛】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.15、1.【解析】
将a2﹣4ab+4b2进行因式分解变形为(a﹣2b)2,再把a﹣2b=10,代入即可.【详解】∵a﹣2b=10,∴a2﹣4ab+4b2=(a﹣2b)2=102=1,故答案为:1.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式因式分解,求出相应的式子的值.16、1或.【解析】
分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.【详解】在菱形ABCD中,∵∠A=60°,AD=,∴AC=3,①当CG=BC=时,AG=AC=CG=3-,∴AP=AG=.②当GC=GB时,易知GC=1,AG=2,∴AP=AG=1,故答案为1或.【点睛】本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题17、y=40-5x【解析】
直接利用汽车耗油量结合油箱的容积,进而得出油箱内剩余油量y(L)与行驶时间x(h)的关系式.【详解】由题意可得:y=40-5x.故答案为y=40-5x.【点睛】此题主要考查了函数关系式,根据汽车耗油量得出函数关系式是解题关键.18、y=3x-1【解析】解:设函数解析式为y+1=kx,∴1k=4+1,解得:k=3,∴y+1=3x,即y=3x-1.三、解答题(共66分)19、(2)证明见解析;(2)四边形AECF的面积为4﹣2.【解析】试题分析:(2)根据正方形的性质,可得正方形的四条边相等,对角线平分对角,根据SAS,可得△ABF与△CBF与△CDE与△ADE的关系,根据三角形全等,可得对应边相等,再根据四条边相等的四边形,可得证明结果;(2)根据正方形的边长、对角线,可得直角三角形,根据勾股定理,可得AC、EF的长,根据菱形的面积公式,可得答案.试题解析:(2)证明:正方形ABCD中,对角线BD,∴AB=BC=CD=DA,∠ABF=∠CBF=∠CDE=∠ADE=45°.∵BF=DE,∴△ABF≌△CBF≌△DCE≌△DAE(SAS).AF=CF=CE=AE∴四边形AECF是菱形;(2)∵AB=2,∴AC=BD=∴OA=OB==2.∵BF=2,∴OF=OB-BF=2-2.∴S四边形AECF=AC•EF=.考点:2.正方形的性质;2.菱形的判定与性质.20、(1)见解析;(2)周长为:11.【解析】
(1)根据三角形的中位线的定理和平行四边形的判定即可解答;(2)利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【详解】(1)证明:∵点E,F分别是AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC且EF=BC;又∵点H,G分别是BD,CD的中点,∴HG是△BCD的中位线,∴HG∥BC且HG=BC;∴EF∥HG且EF=HG,∴四边形EFGH是平行四边形.(2)∵点E,H分别是AB,BD的中点,∴EH是△ABD的中位线,∴EH=AD=3;∵∠BDC=90°,∴△BCD是直角三角形;在Rt△BCD中,CD=3,BD=4,∴由勾股定理得:BC=5;∵HG=BC,∴HG=;由(1)知,四边形EFGH是平行四边形,∴周长为2EH+2HG=11.【点睛】本题考查了三角形中位线定理,勾股定理,掌握三角形中位线定理,勾股定理是解决问题的关键.21、(1)5,1;(2)芦苇的长度为13尺.【解析】
(1)直接利用题意结合图形得出各线段长;(2)利用勾股定理得出AG的长进而得出答案.【详解】(1)线段AF的长为5尺,线段EF的长为1尺;故答案为:5,1;(2)设芦苇的长度x尺,则图中AG=x,GF=x−1,AF=5,在Rt△AGF中,∠AFC=90∘,由勾股定理得AF+FG=AG.所以5+(x−1)=x,解得x=13,答:芦苇的长度为13尺.【点睛】此题考查勾股定理,解题关键在于得出AG的长.22、(1)①;②见解析;(2)的长为或【解析】
(1)①根据正方形性质,求出;根据等腰三角形性质,求出的度数,即可求得.②根据正方形对称性得到;根据四边形内角和证出;利用等角对等边即可证出.(2)分情况讨论:①当点F在线段BC上时;②当点F在线段CB延长线上时;根据正方形的对称性,证出;再根据等腰三角形的性质,求出线段NC,BN;利用勾股定理,求出BE、BD,进而求出DE.【详解】解:(1)①为正方形,.又,.②证明:正方形关于对称,,.又,又,,.(2)①当点F在线段BC上时,过E作MN⊥BC,垂足为N,交AD于M,如图1所示:∴N是CF的中点,∴BF=1,∴CF=1又∵四边形CDMN是矩形∴为等腰直角三角形∴②当点F在线段CB延长线上时,如图2所示:过点E作MN⊥BC,垂足为N,交AD于M∵正方形ABCD关于BD对称又∵又∴FC=3∴∴∴,综上所述,的长为或【点睛】本题考查了三角形全等、等腰三角形的性质、三线合一、勾股定理等知识点;难点在(2),注意分情况讨论;本题难度较大,属于中考压轴题.23、(1)x=;(2)x=1【解析】
(1)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;(2)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;【详解】(1)+=33-2=3(2x-2)1=6x-6x=,当x=时,2x-2≠0,所以x=是方程的解;(2)x-3+2(x+3)=6x-3+2x+6=63x=3x=1.当x=1时,x2-9≠0,所以x=1是方程的解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24、(1)①见解析;②见解析;(2)EC=2(CD-PC)或EC=2(CD+PC)【解析】
(1)①构建题意画出图形即可;②想办法证明△APB≌△PEH即可;(2)结论:当点P在线段BC上时:CE=2(CD-CP).
当点P在线段BC的延长线上时:CE=【详解】解:(1)①补全图形如图所示.②证明:∵线段PA绕点P顺时针能转90°得到线段PE,∴PA=PE,∠APE=∵四边形ABCD是正方形,∴∠4=∠ABC=90AB=BC∵EF⊥BC于H,∴ΔAPB≅ΔPEH∴PB=EH,AB=PH,∴BC=PH∴PB=CH,∴CH=EH.∵∠ACB=1∴CH=FH,∴EH=FH;(2)当点P在线段BC上时:CE=2理由:在BA上截取B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度医院护士劳动合同绩效考核及奖惩办法
- 电动汽车的崛起与可持续发展的未来
- 医疗纠纷申请书
- 展期贷款申请书
- 2025年度养殖行业人才培养与输送承包合同养殖业承包合同
- 游泳池装修合同样本
- 2025年度无纺布原材料进口及国内销售合同范本
- 2025年度保险代理合同中未约定乙方开具发票的处理细则
- 民事撤诉申请书格式
- 港澳通行证申请书模板
- 中考物理复习备考策略
- 博士后进站申请书博士后进站申请书八篇
- 小报:人工智能科技科学小报手抄报电子小报word小报
- GB/T 41509-2022绿色制造干式切削工艺性能评价规范
- 全面介绍现货中远期交易
- 公安系防暴安全03安检
- 孙权劝学教案全国一等奖教学设计
- 企业生产现场6S管理知识培训课件
- 五年级下册数学课件 第10课时 练习课 苏教版(共11张PPT)
- 电梯口包边施工方案正式
- 三年级道德与法治下册我是独特的
评论
0/150
提交评论