2024届河北省保定市莲池区数学八年级下册期末综合测试试题含解析_第1页
2024届河北省保定市莲池区数学八年级下册期末综合测试试题含解析_第2页
2024届河北省保定市莲池区数学八年级下册期末综合测试试题含解析_第3页
2024届河北省保定市莲池区数学八年级下册期末综合测试试题含解析_第4页
2024届河北省保定市莲池区数学八年级下册期末综合测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省保定市莲池区数学八年级下册期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=()A.33° B.80° C.57° D.67°2.分式有意义,则x的取值范围是()A.x1 B.x0 C.x1 D.x13.下图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn0)的大致图像是()A. B.C. D.4.下列给出的四个点中,在直线的是()A. B. C. D.5.下列图形既是中心对称图形,又是轴对称图形的是()A. B. C. D.6.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是()A.m B.m C.m D.m7.《九章算术》记载“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,且ME=30步,NF=750步,则正方形的边长为()A.150步 B.200步 C.250步 D.300步8.某学校初、高六个年级共有名学生,为了了解其视力情况,现采用抽样调查,如果按的比例抽样,则样本容量是()A. B. C. D.9.使代数式有意义的x的取值范围是()A. B. C.且 D.一切实数10.已知不等式组的解集是x≥2,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≤211.如图,在中,,,垂足为,点是边的中点,,,则()A.8 B.7.5 C.7 D.612.如图,在Rt△ABC中,∠A=30°,DE是斜边AC的中垂线,分别交AB,AC于D、E两点,若BD=2,则AC的长是()A.2 B.3 C.4 D.8二、填空题(每题4分,共24分)13.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.14.若a2﹣5ab﹣b2=0,则的值为_____.15.如图,在中,,,,为上一点,,将绕点旋转至,连接,分别为的中点,则的最大值为_________.16.直线y=﹣3x+5与x轴交点的坐标是_____.17.如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在处,则重叠部分△AFC的面积为___________18.如图,一次函数的图象交轴于点,交轴于点,点在线段上,过点分别作轴于点,轴于点.若矩形的面积为,则点的坐标为______.三、解答题(共78分)19.(8分)小强打算找印刷公司设计一款新年贺卡并印刷.如图1是甲印刷公司设计与印刷卡片计价方式的说明(包含设计费与印刷费),乙公司的收费与印刷卡片数量的关系如图2所示.(1)分别写出甲乙两公司的收费y(元)与印刷数量x之间的关系式.(2)如果你是小强,你会选择哪家公司?并说明理由.20.(8分)解分式方程:.21.(8分)如图,在平行四边形ABCD中,,延长DA于点E,使得,连接BE.求证:四边形AEBC是矩形;过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若,,求的面积.22.(10分)如图,,平分,且交于点,平分,且交于点,与相交于点,连接(1)求证:四边形是菱形.(2)若,,求的长.23.(10分)如图,将的边延长至点,使,连接,,,交于点.(1)求证:;(2)若,求证:四边形是矩形.24.(10分)已知:如图,在中,于点,为上一点,连结交于,且,,求证:.25.(12分)某公司对应聘者A,B进行面试,并按三个方面给应聘者打分,每方面满分20分,打分结果如下表:根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:1:3的比例确定两人的成绩,通过计算说明谁将被录用.26.如图,在中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.(1)求证:AE=CF(2)若AB=9,AC=16,AE=4,BF=,求四边形ABCD的面积.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.【详解】解:在△ABC中,∠A=33°,

∴由平移中对应角相等,得∠EDF=∠A=33°.

故选:A.【点睛】此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.2、C【解析】分析:根据分式有意义的条件可得x﹣1≠0,再解不等式即可.详解:由题意得:x﹣1≠0,解得:x≠1.故选C.点睛:本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.3、C【解析】

根据一次函数图像与系数的关系以及正比例函数图像与系数的关系逐一对各选项进行判断,然后进一步得出答案即可.【详解】A:由一次函数图像可知:m>0,n>0,则mn>0,由正比例函数图像可得:mn<0,互相矛盾,故该选项错误;B:由一次函数图像可知:m>0,n<0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;C:由一次函数图像可知:m﹤0,n>0,则此时mn﹤0,由正比例函数图像可得:mn<0,故该选项正确;D:由一次函数图像可知:m﹤0,n﹥0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;故选:C.【点睛】本题主要考查了正比例函数图像以及一次函数图像与系数的关系,熟练掌握相关概念是解题关键.4、D【解析】

只需把每个点的横坐标即x的值分别代入,计算出对应的y值,然后与对应的纵坐标比较即可.【详解】解:A、当时,,则不在直线上;B、当时,,则不在直线上;C、当时,,则不在直线上;D、当时,,则在直线上;故选:D.【点睛】本题考查判断点是否在直线上,知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.5、D【解析】

根据中心对称图形与轴对称图形的定义依次分析各选项即可判断.【详解】A只是轴对称图形,B只是中心对称图形,C只是轴对称图形,D既是中心对称图形,又是轴对称图形,故选D.【点睛】本题考查中心对称图形与轴对称图形的定义,解题的关键是知道轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定0.00000094=9.4×10-1.故选A.7、D【解析】

根据题意,可知Rt△AEM∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【详解】解:设正方形的边长为x步,∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴AM=AD,AN=AB,∴AM=AN,由题意可得,Rt△AEM∽Rt△FAN,∴,即AM2=30×750=22500,解得:AM=150,∴AD=2AM=300步;故选:D.【点睛】本题考查相似三角形的应用、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.8、C【解析】

总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:10×10%=1,

故样本容量是1.

故选:C.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.9、C【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.10、B【解析】

解不等式①可得出x≥,结合不等式组的解集为x≥1即可得出a=1,由此即可得出结论.【详解】,∵解不等式①得:x≥,又∵不等式组的解集是x≥1,∴a=1.故选B.【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.11、B【解析】

根据直角三角形的性质得到AE=BE=CE=AB=5,根据勾股定理得到CD==3,根据三角形的面积公式即可得到结论.【详解】解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,

∴AE=BE=CE=AB=5,

∵CD⊥AB,DE=4,

∴CD==3,

∴S△AEC=S△BEC=×BE•CD=×5×3=7.5,

故选:B.【点睛】本题考查了直角三角形斜边上的中线,能求出AE=CE是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半12、C【解析】

直接利用线段垂直平分线的性质得出AD=CD,进而结合已知角得出DC,BC的长,进而利用勾股定理得出答案.【详解】连接DC,在Rt△BCA中,∵DE为AC的垂直平分线,∴AD=CD,∴∠A=∠DCA=30°,∴∠BDC=60°,在Rt△CBD中,BD=2,,解得:DC=4,BC=2,在Rt△CBA中,BC=2,AC=2BC=4故选C.【点睛】此题主要考查了含30度角的直角三角形和线段垂直平分线的性质,正确得出DC的长是解题关键.二、填空题(每题4分,共24分)13、【解析】

设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.【详解】设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C∴OB=3∵经过原点的直线将图形分成面积相等的两部分∴直线上方面积分是4∴三角形ABO的面积是5∴∴∴直线经过点设直线l为则∴直线的函数关系式为【点睛】本题考查了一次函数,难点在于利用已知条件中的面积关系,熟练掌握一次函数相关知识点是解题关键.14、5【解析】

由已知条件易得,,两者结合即可求得所求式子的值了.【详解】∵,∴,∵,∴.故答案为:5.【点睛】“能由已知条件得到和”是解答本题的关键.15、+2【解析】

利用直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得MF的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.【详解】解:如图,取AB的中点M,连接MF和CM,

∵将线段AD绕点A旋转至AD′,

∴AD′=AD=1,

∵∠ACB=90°,

∵AC=6,BC=2,

∴AB=.

∵M为AB中点,

∴CM=,

∵AD′=1.

∵M为AB中点,F为BD′中点,

∴FM=AD′=2.

∵CM+FM≥CF,

∴当且仅当M、F、C三点共线且M在线段CF上时,CF最大,

此时CF=CM+FM=+2.

故答案为:+2.【点睛】此题考查旋转的性质,解题的关键是掌握旋转的性质及直角三角形斜边上的中线等于斜边的一半,知道当且仅当M、F、C三点共线且M在线段CF上时CF最大是解题的关键.16、(,)【解析】试题分析:本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的纵坐标为0是解答此题的关键.∵令y=0,则﹣3x+5=0,解得x=,∴直线y=﹣3x+5与x轴交点的坐标是(,0).考点:一次函数图象与x轴的交点17、【解析】

因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,则AF=AB−BF.【详解】解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB(AAS),∴D′F=BF,设D′F=x,则AF=6−x,在Rt△AFD′中,(6−x)2=x2+42,解之得:x=,∴AF=AB−FB=6−=,∴S△AFC=•AF•BC=.故答案为:.【点睛】本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.18、(,1)或(,3)【解析】

由点P在一次函数y=﹣2x+4的图象上,可设P(x,﹣2x+4),由矩形OCPD的面积是可求解.【详解】解:∵点P在一次函数y=﹣2x+4的图象上,∴设P(x,﹣2x+4),∴x(﹣2x+4)=,解得:x1=,x2=,∴P(,1)或(,3).故答案是:(,1)或(,3)【点睛】本题运用了一次函数的点的特征的知识点,关键是运用了数形结合的数学思想.三、解答题(共78分)19、(1)甲的解析式为:y=乙的解析式为:;(2)当时,选择乙公司比较合算,当时,选择两个公司一样合算,当时,选择甲公司比较合算【解析】

(1)根据甲公司的方案分别求出不超过200张和超过200张的不等式即可得出甲的解析式,设乙的解析式为y=kx,根据图像,把(200,1600)代入即可得出乙的解析式;(2)先求出收费相同时的张数,根据解析式分别画出图象,根据图象即可得出结论.【详解】(1)当0≤x≤200时,甲公司的收费为y=5x+1000,当x>200时,甲公司的收费为y=1000+5×200+3(x-200)=3x+1400,∴甲公司的收费y(元)与印刷数量x之间的关系式为y=,根据图像设乙公司的收费y(元)与印刷数量x之间的关系式为y=kx,根据图像可知函数图像经过点(200,1600),∴1600=200k,解得k=8,∴乙公司的收费y(元)与印刷数量x之间的关系式为y=8x.(2)当0≤x≤200时,5x+1000=8x,解得x=,(舍去)当x>200时,3x+1400=8x,解得x=280,∴当印刷数量为280张时,甲、乙公司的收费相同,由(1)得到的关系式可画函数图象如下:根据图像可知,当0≤x≤280时,选择乙公司比较合算,当时,选择两个公司一样合算,当时,选择甲公司比较合算【点睛】本题考查一次函数图象和应用,根据求出的关系式画出函数图象,并从图象上获取信息是解题关键.20、【解析】

首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.【详解】解:方程两边乘以得:,解这个方程得:,检验:当时,,是原方程的解;原方程的解是:.【点睛】本题考查了分式方程的解法、一元一次方程方程的解法;熟练掌握分式方程的解法,方程两边乘以最简公分母,把分式方程化成整式方程是解决问题的关键.21、(1)见解析;(2).【解析】

(1)根据平行四边形的性质得到AD∥BC,AD=BC,推出四边形AEBC是平行四边形,求得∠CAE=90°,于是得到四边形AEBC是矩形;(2)根据三角形的内角和得到∠AGF=60°,∠EAF=60°,推出△AOE是等边三角形,得到AE=EO,求得∠GOF=∠GAF=30°,根据直角三角形的性质得到OG=2,根据三角形的面积公式即可得到结论.【详解】解:四边形ABCD是平行四边形,,,,,,四边形AEBC是平行四边形,,,,四边形AEBC是矩形;,,,,,四边形AEBC是矩形,,是等边三角形,,,,,,,,,的面积.【点睛】本题考查了矩形的判定和性质,平行四边形的性质,等边三角形的性质,直角三角形的性质,正确的识别图形是解题的关键.22、(1)见解析;(2)AD=.【解析】

(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出结论;(2)根据菱形的性质可得∠AOD=90°,OD=3,然后在Rt△AOD中利用勾股定理列方程求出AO即可解决问题.【详解】(1)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴平行四边形四边形ABCD是菱形;(2)∵四边形ABCD是菱形,BD=6,∴∠AOD=90°,OD=3,∵,∴AD=2AO,在Rt△AOD中,AD2=AO2+OD2,即4AO2=AO2+9,∴AO=,∴AD=2AO=.【点睛】本题主要考查了平行线的性质、角平分线定义、等腰三角形的判定、平行四边形的判定、菱形的判定和性质、含30度直角三角形的性质以及勾股定理,熟练掌握菱形的判定定理和性质定理是解题的关键.23、(1)详见解析;(2)详见解析.【解析】

(1)由平行四边形的性质可得,,可得,由“”可证;(2)由一组对边平行且相等可证四边形是平行四边形,由对角线相等的平行四边形是矩形可证平行四边形是矩形.【详解】(1)∵四边形是平行四边形∴∴又∵∴(2)∵,∴∴四边形是平行四边形,∴AE=2AO,BC=2BO,又∵,∴∴∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论