




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省吴兴区七校联考2024年八年级数学第二学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图所示,在菱形ABCD中,∠BAD=120°.已知ΔABC的周长是15,则菱形ABCD的周长是()A.25 B.20 C.15 D.102.下列根式中不是最简二次根式的是()A. B. C. D.3.据统计,湘湖景区跨湖桥遗址参观人数2016年为10.8万人次,2018年为16.8万人次,设该景点年参观人次的年平均增长率为x,则可列方程()A.10.8(1+x)=16.8 B.10.8(1+2x)=16.8C.10.8(1+x)=16.8 D.10.8[(1+x)+(1+x)]=16.84.在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,则图形与原图形相比()A.向右平移了5个单位长度 B.向左平移了5个单位长度C.向上平移了5个单位长度 D.向下平移了5个单位长度5.将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y=kx﹣2的图象上,则k的值为()A.k=2 B.k=4 C.k=15 D.k=366.小明参加短跑训练,2019年2~5月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”.请你小明5年(60个月)后短跑的成绩为()(温馨提示:日前短跑世界记录为9秒58)月份2345成绩(秒)15.615.415.215A.3s B.3.8s C.14.8s D.预测结果不可靠7.如图,OP平分∠AOB,点C,D分别在射线OA,OB上,添加下列条件,不能判定△POC≌△POD的是()A.OC=OD B.∠CPO=∠DPOC.PC=PD D.PC⊥OA,PD⊥OB8.下面几个函数关系式中,成正比例函数关系的是()A.正方体的体积和棱长B.正方形的周长和边长C.菱形的面积一定,它的两条对角线长D.圆的面积与它的半径9.化简的结果是()A.a-b B.a+b C. D.10.当1<a<2时,代数式+|1-a|的值是()A.-1 B.1 C.2a-3 D.3-2a11.甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么()A.甲的波动比乙的波动大 B.乙的波动比甲的波动大C.甲,乙的波动大小一样 D.甲,乙的波动大小无法确定12.如图,中,是边的中点,平分于已知则的长为()A. B.C. D.二、填空题(每题4分,共24分)13.如图,折叠矩形纸片的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,则EC的长为_________.14.《九章算术》是我国最重要的数学著作之一,其中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何”.译文大意是:“有一根竹子高一丈(十尺),竹梢部分折断,尖端落在地上,竹尖与竹根的距离三尺,问竹干还有多高”,若设未折断的竹干长为x尺,根据题意可列方程为_____.15.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据函数图象回答:方程﹣2x+4=0的解是______________;当x_____________时,y>2;当﹣4≤y≤0时,相应x的取值范围是_______________.16.当a=-3时,=_____.17.画在比例尺为的图纸上的某个零件的长是,这个零件的实际长是_______.18.如图,是互相垂直的小路,它们用连接,则_______.三、解答题(共78分)19.(8分)先化简:,再从中选取一个合适的代入求值.20.(8分)如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由21.(8分)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.22.(10分)教材第97页在证明“两边对应成比例且夹角对应相等的两个三角形相似”(如图,已知,求证:)时,利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为前两节课已经解决的方法(即已知两组角对应相等推得相似或已知平行推得相似).利用上述方法完成这个定理的证明.23.(10分)第二届全国青年运动会将于2019年8月在太原开幕,这是山西历史上第一次举办全国大型综合性运动会,必将推动我市全民健康理念的提高.某体育用品商店近期购进甲、乙两种运动衫各50件,甲种用了2000元,乙种用了2400元.商店将甲种运动衫的销售单价定为60元,乙种运动衫的销售单价定为88元.该店销售一段时间后发现,甲种运动衫的销售不理想,于是将余下的运动衫按照七折销售;而乙种运动衫的销售价格不变.商店售完这两种运动衫至少可获利2460元,求甲种运动衫按原价销售件数的最小值.24.(10分)如图1,BD是正方形ABCD的对角线,BC=4,点H是AD边上的一动点,连接CH,作,使得HE=CH,连接AE。(1)求证:;(2)如图2,过点E作EF//AD交对角线BD于点F,试探究:在点H的运动过程中,EF的长度是否为一个定值;如果是,请求出EF的长度。25.(12分)当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.(1)若点E为完美点,且横坐标为2,则点E的纵坐标为;若点F为完美点,且横坐标为3,则点F的纵坐标为;(2)完美点P在直线(填直线解析式)上;(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.26.甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图像线段AB表示甲出发不足2小时因故停车检修),请根据图像所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
参考答案一、选择题(每题4分,共48分)1、B【解析】
由于四边形ABCD是菱形,AC是对角线,根据菱形对角线性质可求∠BAC=60°,而AB=BC=AC,易证△BAC是等边三角形,结合△ABC的周长是15,从而可求AB=BC=5,那么就可求菱形的周长.【详解】∵四边形ABCD是菱形,AC是对角线,∴AB=BC=CD=AD,∠BAC=∠CAD=∠BAD,∴∠BAC=60°,∴△ABC是等边三角形,∵△ABC的周长是15,∴AB=BC=5,∴菱形ABCD的周长是1.故选B.2、C【解析】
最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.=2,故不是最简二次根式.故选C3、C【解析】
2016年为10.8万人次,平均增长率为x,17年就为10.8(1+x),则18年就为10.8(1+x)2即可得出【详解】2016年为10.8万人次,2018年为16.8万人次,,平均增长率为x,则10.8(1+x)2=16.8,故选C【点睛】熟练掌握增长率的一元二次方程列法是解决本题的关键4、B【解析】因为纵坐标不变,横坐标减5,相当于点向左平移了5个单位,故选B.5、B【解析】
根据点的平移规律,得出平移后的点的坐标,将该点坐标代入y=kx﹣2中求k即可.【详解】将点P(5,3)向左平移1个单位,再向下平移1个单位后点的坐标为(1,2),将点(1,2)代入y=kx﹣2中,得k﹣2=2,解得k=1.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,点的坐标平移规律.关键是找出平移后点的坐标.6、D【解析】
由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【详解】解:(1)设y=kx+b依题意得,
解得,
∴y=-0.2x+1.
当x=60时,y=-0.2×60+1=2.
因为目前100m短跑世界纪录为9秒58,显然答案不符合实际意义,
故选:D.【点睛】本题考查了一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7、C【解析】
根据三角形全等的判定方法对各选项分析判断即可得解.【详解】∵OP是∠AOB的平分线,∴∠AOP=∠BOP,而OP是公共边,A、添加OC=OD可以利用“SAS”判定△POC≌△POD,B、添加∠OPC=∠OPD可以利用“ASA”判定△POC≌△POD,C、添加PC=PD符合“边边角”,不能判定△POC≌△POD,D、添加PC⊥OA,PD⊥OB可以利用“AAS”判定△POC≌△POD,故选:C.【点睛】本题考查了角平分线的定义,全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.8、B【解析】
根据正比例函数的定义进行判断.【详解】解:A、设正方体的体积为V,棱长为a,则V=a3,不符合正比例函数的定义,故本选项错误;B、设正方形的周长为C,边长为a,则C=4a,符合正比例函数的定义,故本选项正确;C、设菱形面积为S,两条对角线长分别为m,n,则S=mn,不符合正比例函数的定义,故本选项错误;D、设圆的面积为S,半径为r,则S=πr2,不符合正比例函数的定义,故本选项错误;故选:B.【点睛】本题主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.9、B【解析】
直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.【详解】.故选B.【点睛】此题主要考查了分式的混合运算,熟练掌握运算法则是解题关键.10、B【解析】
解:∵1<a<2,∴=|a-2|=-(a-2),|1-a|=a-1,∴+|1-a|=-(a-2)+(a-1)=2-1=1.故选B.11、A【解析】
根据方差的定义,方差越小数据越稳定,故可选出正确选项.【详解】解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.故选A.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、A【解析】
延长BE交AC于F,由三线合一定理,得到△ABF是等腰三角形,则AF=AB=10,BE=EF,根据三角形中位线定理计算即可.【详解】解:延长交于点.,平分,为等腰三角形.,E为的中点又为的中点为的中位线,故选:A.【点睛】本题考查的是三角形中位线定理、三线合一定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.二、填空题(每题4分,共24分)13、3cm【解析】【分析】由矩形的性质可得CD=AB=8,AD=BC=10,由折叠的性质可得AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,由勾股定理可求出BF的长,继而可得FC的长,设CE=x,则DE=8-x,EF=DE=8-x,在Rt△CEF中,利用勾股定理即可救出CE的长.【详解】∵四边形ABCD为矩形,∴CD=AB=8,AD=BC=10,∵折叠矩形ABCD的一边AD,使点D落在BC边的点F处,∴AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,BF==6,∴FC=BC-BF=4,设CE=x,则DE=8-x,EF=DE=8-x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8-x)2,解得x=3,即CE=3cm,故答案为:3cm.【点睛】本题考查了矩形的性质、折叠的性质、勾股定理等,熟练掌握相关的性质及定理是解题的关键.14、x1+31=(10﹣x)1【解析】
根据勾股定理即可得出结论.【详解】设未折断的竹干长为x尺,根据题意可列方程为:x1+31=(10−x)1.故答案为:x1+31=(10−x)1.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15、(1)见解析;(2)x=2,<1,2≤x≤1【解析】
(1)列表,描点,连线即可;
(2)利用函数图象得出y=0时,x的值;观察y>2时,函数图象对应的x的取值;观察函数图象,即可确定当﹣1≤y≤0时,x对应的取值范围.【详解】(1)列表:x20y=﹣2x+101描点,连线可得:(2)根据函数图象可得:当y=0时,x=2,故方程﹣2x+1=0的解是x=2;当x<1时,y>2;当﹣1≤y≤0时,相应x的取值范围是2≤x≤1.故答案为:x=2;<1;2≤x≤1.【点睛】本题考查的是作一次函数的图象及一次函数与不等式的关系,能把式子与图象结合起来是关键.16、1【解析】
把a=-1代入二次根式进行化简即可求解.【详解】解:当a=-1时,=1.
故答案为:1.【点睛】本题考查二次根式的计算,理解算术平方根的意义是解题的关键.17、640【解析】
首先设这个零件的实际长是xcm,根据比例尺的定义即可得方程,解此方程即可求得答案,注意单位换算.【详解】解:设这个零件的实际长是xcm,根据题意得:,解得:x=640,则这个零件的实际长是640cm.故答案为:640【点睛】此题考查了比例尺的应用.此题比较简单,注意掌握方程思想的应用.18、450°【解析】
如图,作出六边形,根据“n边形的内角和是(n-2)•180°”求出内角和,再求∠的度数.【详解】解:过点A作AB的垂线,过点E作DE的垂线,两线相交于点Q,则∠BAQ=∠DEQ=90°,∵DE⊥AB,QA⊥AB,∴DE∥QA,∴∠AQE=180°-∠DEQ=90°,∵六边形ABCDEQ的内角和为:(6-2)•180°=720°,∴=720°-90°×3=450°.故答案为:450°.【点睛】本题主要考查了多边形的内角和定理.解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.三、解答题(共78分)19、,【解析】
根据分式的运算法则先化简,再选择合适的值带入即可求出答案.【详解】解:原式,由分式有意义的条件可知:,且,∴当时,原式.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型,需要注意选择的值要使分式有意义.20、(1)G(0,4-);(2);(3).【解析】
1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt△AGF中,利用勾股定理求出,那么OG=OA-AG=4-,于是G(0,4-);(2)先在Rt△AGF中,由,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt△BFE,求出BE=BFtan60°=2,那么CE=4-2,E(3,4-2).设直线EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.【详解】解:(1)∵F(1,4),B(3,4),∴AF=1,BF=2,由折叠的性质得:GF=BF=2,在Rt△AGF中,由勾股定理得,∵B(3,4),∴OA=4,∴OG=4-,∴G(0,4-);(2)在Rt△AGF中,∵,∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=60°,在Rt△BFE中,∵BE=BFtan60°=2,.CE=4-2,.E(3,4-2).设直线EF的表达式为y=kx+b,∵E(3,4-2),F(1,4),∴解得∴;(3)若以M、N、F、G为顶点的四边形是平行四边形,则分如下四种情况:①FG为平行四边形的一边,N点在x轴上,GFMN为平行四边形,如图1所示.过点G作EF的平行线,交x轴于点N1,再过点N:作GF的平行线,交EF于点M,得平行四边形GFM1N1.∵GN1∥EF,直线EF的解析式为∴直线GN1的解析式为,当y=0时,.∵GFM1N1是平行四边形,且G(0,4-),F(1,4),N1(,0),∴M,(,);②FG为平行四边形的一边,N点在x轴上,GFNM为平行四边形,如图2所示.∵GFN2M2为平行四边形,∴GN₂与FM2互相平分.∴G(0,4-),N2点纵坐标为0∴GN:中点的纵坐标为,设GN₂中点的坐标为(x,).∵GN2中点与FM2中点重合,∴∴x=∵.GN2的中点的坐标为(),.∴N2点的坐标为(,0).∵GFN2M2为平行四边形,且G(0,4-),F(1,4),N2(,0),∴M2();③FG为平行四边形的一边,N点在y轴上,GFNM为平行四边形,如图3所示.∵GFN3M3为平行四边形,.∴GN3与FM3互相平分.∵G(0,4-),N2点横坐标为0,.∴GN3中点的横坐标为0,∴F与M3的横坐标互为相反数,∴M3的横坐标为-1,当x=-1时,y=,∴M3(-1,4+2);④FG为平行四边形的对角线,GMFN为平行四边形,如图4所示.过点G作EF的平行线,交x轴于点N4,连结N4与GF的中点并延长,交EF于点M。,得平行四边形GM4FN4∵G(0,4-),F(1,4),∴FG中点坐标为(),∵M4N4的中点与FG的中点重合,且N4的纵坐标为0,.∴M4的纵坐标为8-.5-45解方程,得∴M4().综上所述,直线EF上存在点M,使以M,N,F,G为顶点的四边形是平行四边形,此时M点坐标为:。【点睛】本题是一次函数的综合题,涉及到的考点包括待定系数法求一次函数的解析式,矩形、平行四边形的性质,轴对称、平移的性质,勾股定理等,对解题能力要求较高.难点在于第(3)问,这是一个存在性问题,注意平行四边形有四种可能的情形,需要一一分析并求解,避免遗漏.21、(1)EB=FD,(2)EB=FD,证明见解析;(3)不变,等于60°.【解析】
(1)EB=FD,利用正方形的性质、等边三角形的性质和全等三角形的证明方法可证明△AFD≌△ABE,由全等三角形的性质即可得到EB=FD;
(2)当四边形ABCD为矩形时,EB和FD仍旧相等,证明的思路同(1);
(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD不发生变化,是一定值,为60°.【详解】解:(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,,∴△AFD≌△ABE,∴EB=FD;(2)EB=FD.证:∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE∴△FAD≌△BAE∴EB=FD;(3)解:同(2)易证:△FAD≌△BAE,∴∠AEB=∠ADF,设∠AEB为x°,则∠ADF也为x°于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,∴∠EGD=180°﹣∠BED﹣∠EDF=180°﹣(60﹣x)°﹣(60+x)°=60°.22、见解析【解析】
在AB上截取AG=DE,作GH∥BC,则可得△AGH∽△ABC,再由已知条件证明△AGH≌△DEF即可证明:△ABC∽△DEF.【详解】证明:在上截取,作...∵,∴,∵,∴,∴.【点睛】本题考查了相似三角形的判定和性质以及全等三角形的判定,解题的关键是正确作出辅助线构造全等三角形.23、甲种运动衫按原价销售件数的最小值为20件.【解析】
设甲种运动衫按原价销售件数为x件,根据商店售完这两种运动衫至少可获利2460元列不等式求解即可.【详解】解:设甲种运动衫按原价销售件数为x件.,解得x≥20,答:甲种运动衫按原价销售件数的最小值为20件.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.24、(1)见解析(2)EF为定值4【解析】
(1)根据CH⊥HE与正方形的内角为90°即可证明;(2)连接FH,作EM⊥AG延长线,可证明四边形EFHM为矩形,再得到EF=HM=DC即可求解.【详解】(1)∵CH⊥HE∴∠CHD+∠AHE=90°,又∠DCH+∠CHD=90°,∴(2)连接FH,作EM⊥AG延长线,∵EF//AD,FH⊥DA,∴四边形EFHM为矩形∴EF=HM∵CH=HE,,又∠CDH=∠HME=90°,∴△CDH≌△HME∴HM=CD,故EF=CD=4为定值.【点睛】此题主要考查正方形的判定与性质,解题的关键是根据题意作出辅助线进行求解.25、(1)1,2;(2)y=x﹣1;(3)△MBC的面积=.【解析】
(1)把m=2和3分别代入m+n=mn,求出n即可;(2)求出两条直线的解析式,再把P点的坐标代入即可;(3)由m+n=mn变式为=m﹣1,可知P(m,m﹣1),所以在直线y=x﹣1上,点A(0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.【详解】(1)把m=2代入m+n=mn得:2+n=2n,解得:n=2,即==1,所以E的纵坐标为1;把m=3代入m+n=mn得:3+n=3n,解得:n=,即,所以F的纵坐标为2;故答案为:1,2;(2)设直线AB的解析式为y=kx+b,从图象可知:与x轴的交点坐标为(5,0)A(0,5),代入得:,解得:k=﹣1,b=5,即直线AB的解析式是y=﹣x+5,设直线BC的解析式为y=ax+c,从图象可知:与y轴的交点坐标为(0,﹣1),与x轴的交点坐标为(1,0),代入得:,解得:a=1,c=﹣1,即直线BC的解析式是y=x﹣1,∵P(m,),m+n=mn且m,n是正实数,∴除以n得:,即∴P(m,m﹣1)即“完美点”P在直线y=x﹣1上;故答案为:y=x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 涤纶丝项目可行性研究报告(范文)
- 重大事故隐患涉粉尘防爆条款的解读和案例讲解
- 2025体育与娱乐趋势报告-+电通-202504
- 19、为理想启航(教学设计) -北师大版心理健康六年级下册
- 2025年区块链工程师职业能力测试卷:区块链技术安全漏洞分析与防护试题
- 2025年消防设施检测员资格考试题库:消防法律法规精解与消防设施检测规范试题
- 2025年初中学业水平考试地理模拟试卷-自然地理知识点精讲
- 2025年电子商务师职业资格考试题库:电子商务知识产权试题
- 2025年专升本艺术概论考试模拟卷:艺术传播与媒介传播效果评估策略试题
- 2025年美容师高级护理技能测试卷:美容师高级护理实操技能考核
- 2025山西杏花村旅游开发有限公司招聘50人笔试参考题库附带答案详解
- 贯彻落实清理规范非融资性担保方案指导意见
- 工程甩项合同协议
- 期中模拟卷(新疆专用)-2024-2025学年八年级英语下学期核心素养素质调研模拟练习试题(考试版)A4
- 2025广东省深圳市中考数学复习分类汇编《函数综合题》含答案解析
- 金融工程重点总结
- 渔业资源与渔场学课件蓝点马鲛学习资料
- 2025年度毛绒玩具采购合同
- 2024年四川成都农业科技中心招聘笔试真题
- 胸腔积液课件
- 《内河运输船舶重大事故隐患判定标准》知识培训
评论
0/150
提交评论