辽宁省营口市大石桥市水源镇2024年数学八年级下册期末统考模拟试题含解析_第1页
辽宁省营口市大石桥市水源镇2024年数学八年级下册期末统考模拟试题含解析_第2页
辽宁省营口市大石桥市水源镇2024年数学八年级下册期末统考模拟试题含解析_第3页
辽宁省营口市大石桥市水源镇2024年数学八年级下册期末统考模拟试题含解析_第4页
辽宁省营口市大石桥市水源镇2024年数学八年级下册期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省营口市大石桥市水源镇2024年数学八年级下册期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各组线段中,不能够组成直角三角形的是()A.6,8,10 B.3,4,5 C.4,5,6 D.5,12,132.己知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值()A.3 B.1 C.-1 D.-33.一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个5.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形6.如图,在长方形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,连结EF,若AB=6,BC=4,则FD的长为()A.2 B.4 C. D.27.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.4 B.6 C.8 D.108.若分式有意义,则的取值范围是()A. B. C. D.9.如图,在菱形ABCD中,对角线AC、BD相较于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长为()A.5 B. C. D.10.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是()A. B. C. D.11.如图,两地被池塘隔开,小明先在直线外选一点,然后测量出,的中点,并测出的长为.由此,他可以知道、间的距离为()A. B. C. D.12.二次函数y=ax1+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②1a+b=0;③若m为任意实数,则a+b>am1+bm;④a﹣b+c>0;⑤若ax11+bx1=ax11+bx1,且x1≠x1,则x1+x1=1.其中,正确结论的个数为()A.1 B.1 C.3 D.4二、填空题(每题4分,共24分)13.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.14.根据指令,机器人在平面上能完成下列动作:先原地逆时针旋转角度,再朝其面对的方向沿直线行走距离,现机器人在平面直角坐标系的坐标原点,且面对轴正方向.请你给机器人下一个指令__________,使其移动到点.15.某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.16.如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=__.17.命题“对角线相等的四边形是矩形”的逆命题是_____________.18.分解因式:___________.三、解答题(共78分)19.(8分)某工厂从外地购得A种原料16吨,B种原料13吨,现计划租用甲、乙两种货车6辆将购得的原料一次性运回工厂,已知一辆甲种货车可装2吨A种原料和3吨B种原料;一辆乙种货车可装3吨A种原料和2吨B种原料,设安排甲种货车x辆.(1)如何安排甲、乙两种货车?写出所有可行方案;(2)若甲种货车的运费是每辆500元,乙种货车的运费是每辆350元,设总运费为W元,求W(元)与x(辆)之间的函数关系式;(3)在(2)的前提下,当x为何值时,总运费最少,此时总运费是多少元?20.(8分)一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.21.(8分)甲、乙两人同时从P地出发步行分别沿两个不同方向散步,甲以的速度沿正北方向前行;乙以的速度沿正东方向前行,(1)过小时后他俩的距离是多少?(2)经过多少时间,他俩的距离是?22.(10分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园(围墙最长可利用),现在已备足可以砌长的墙的材料,恰好用完,试求的长,使矩形花园的面积为.23.(10分)如图1,在平面直角坐标系中直线与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转得到CD,此时点D恰好落在直线AB上时,过点D作轴于点E.求证:≌;如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;若点P在y轴上,点Q在直线AB上是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.24.(10分)已知BD是△ABC的角平分线,ED⊥BC,∠BAC=90°,∠C=30°.(1)求证:CE=BE;(2)若AD=3,求△ABC的面积.25.(12分)如图,在四边形中,的平分线交于点的平分线交于点,交于点,且.(1)求证:四边形是平行四边形;(2)若,求线段的长.26.在梯形中,,,,,,点E、F分别在边、上,,点P与在直线的两侧,,,射线、与边分别相交于点M、N,设,.(1)求边的长;(2)如图,当点P在梯形内部时,求关于x的函数解析式,并写出定义域;(3)如果的长为2,求梯形的面积.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【详解】A.62+82=102,能构成直角三角形,故不符合题意;B.32+42=52,能构成直角三角形,故不符合题意;C.42+52≠62,不能构成直角三角形,故符合题意;D.52+122=132,能构成直角三角形,故不符合题意.故选C.【点睛】此题考查勾股定理的逆定理,解题关键在于掌握运算公式.2、A【解析】

将自变量x的值代入函数解析式求解即可.【详解】解:x=-1时,y=-(-1)+2=1+2=1.

故选:A.【点睛】本题考查函数值的计算:(1)当已知函数解析式时,求函数值就是求代数式的值;

(2)函数值是唯一的,而对应的自变量可以是多个.3、C【解析】

一次项系数-3<1,则图象经过二、四象限;常数项5>1,则图象还过第一象限.【详解】解:∵-3<1,∴图象经过二、四象限;

又∵5>1,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.

所以一次函数y=-3x+5的图象经过一、二、四象限,不经过第三象限.

故选:C.【点睛】一次函数的图象经过第几象限,取决于x的系数及常数是大于1或是小于1.可借助草图分析解答.4、B【解析】

根据中心对称的概念对各图形分析判断即可得解.【详解】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【解析】

直接利用特殊平行四边形的判定逐一进行判断即可【详解】有一组邻边相等的平行四边形是菱形,故A正确对角线互相垂直的平行四边形是菱形,故B正确有一个角是直角的平行四边形是矩形,故C正确对角线垂直且相等的平行四边形是正方形,故D错误本题选择不正确的,故选D【点睛】本题主要考查平行四边形性质、矩形的判定定理、正方形判定定理、菱形判定定理,基础知识扎实是解题关键6、B【解析】试题分析:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,在Rt△EDF和Rt△EGF中,∵ED=EG,EF=EF,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6﹣x,在Rt△BCF中,,解得x=3.故选B.考点:3.翻折变换(折叠问题);3.综合题.7、B【解析】

平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【详解】解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=1.故选:B.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确理解DE最小的条件是关键.8、A【解析】

根据分式有意义的条件:分母不等于0,即可求解.【详解】解:根据题意得:x-1≠0,

解得:x≠1.

故选:A.【点睛】此题考查分式有意义的条件,正确理解条件是解题的关键.9、C【解析】

在中,根据求出OC,再利用面积法可得,由此求出AE即可.【详解】四边形ABCD是菱形,,,,在中,,,故,解得:.故选C.【点睛】此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.10、C【解析】

根据中心对称图形的概念进行分析.【详解】A、不是中心对称图形,故此选项错误;

B、不是中心对称图形,故此选项错误;

C、是中心对称图形,故此选项正确;

D、不是中心对称图形,故此选项错误;

故选:C.【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、D【解析】

根据三角形中位线定理解答.【详解】解:∵点M,N分别是AC,BC的中点,

∴AB=2MN=13(m),

故选:C.【点睛】本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是关键.12、B【解析】

由抛物线的开口方向、对称轴位置、与y轴的交点位置判断出a、b、c与0的关系,进而判断①;根据抛物线对称轴为x==1判断②;根据函数的最大值为:a+b+c判断③;求出x=﹣1时,y<0,进而判断④;对ax11+bx1=ax11+bx1进行变形,求出a(x1+x1)+b=0,进而判断⑤.【详解】解:①抛物线开口方向向下,则a<0,抛物线对称轴位于y轴右侧,则a、b异号,即b>0,抛物线与y轴交于正半轴,则c>0,∴abc<0,故①错误;②∵抛物线对称轴为直线x==1,∴b=﹣1a,即1a+b=0,故②正确;③∵抛物线对称轴为直线x=1,∴函数的最大值为:a+b+c,∴当m≠1时,a+b+c>am1+bm+c,即a+b>am1+bm,故③错误;④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,故④错误;⑤∵ax11+bx1=ax11+bx1,∴ax11+bx1﹣ax11﹣bx1=0,∴a(x1+x1)(x1﹣x1)+b(x1﹣x1)=0,∴(x1﹣x1)[a(x1+x1)+b]=0,而x1≠x1,∴a(x1+x1)+b=0,即x1+x1=﹣,∵b=﹣1a,∴x1+x1=1,故⑤正确.综上所述,正确的是②⑤,有1个.故选:B.【点睛】本题主要考查二次函数图象与系数之间的关系,解题的关键是会利用对称轴求1a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(每题4分,共24分)13、y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.14、[3,135°].【解析】

解决本题要根据旋转的性质,构造直角三角形来解决.【详解】解:如图所示,设此点为C,属于第二象限的点,过C作CD⊥x轴于点D,那么OD=DC=3,

∴∠COD=45°,OC=OD÷cos45°=,则∠AOC=180°−45°=135°,那么指令为:[,135°]故答案为:[,135°]【点睛】本题考查求新定义下的点的旋转坐标;应理解运动指令的含义,构造直角三角形求解.15、144(1﹣x)2=1.【解析】

设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.【详解】设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,根据题意,得144(1﹣x)2=1.故答案为144(1﹣x)2=1.【点睛】本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.16、15【解析】l1∥l2∥l3,,所以,所以AC=15.17、矩形的对角线相等【解析】

根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,原命题的条件是对角线相等,结论是矩形,互换即可得解.【详解】原命题的条件是:对角线相等的四边形,结论是:矩形;则逆命题为矩形的对角线相等.【点睛】此题主要考查对逆命题的理解,熟练掌握,即可解题.18、ab(a+b)(a﹣b).【解析】分析:先提公因式ab,再把剩余部分用平方差公式分解即可.详解:a3b﹣ab3,=ab(a2﹣b2),=ab(a+b)(a﹣b).点睛:此题考查了综合提公因式法和公式法因式分解,分解因式掌握一提二用,即先提公因式,再利用平方差或完全平方公式进行分解.三、解答题(共78分)19、(1)有两种可行方案,方案一:安排甲种货车1辆,乙种货车5辆,方案二:安排甲种货车2辆,乙种货车4辆;(2)x为1时,总运费最少,此时总运费是2250元.【解析】【分析】(1)依题意得,解不等式组即可;(2)直接根据数量关系可列W=500x+350(6−x)=150x+2100;(3)结合(1)和(2),当x最小时,运费最少.【详解】(1)由题意可得,,解得,1⩽x⩽2,∴有两种可行方案,方案一:安排甲种货车1辆,乙种货车5辆,方案二:安排甲种货车2辆,乙种货车4辆;(2)由题意可得,W=500x+350(6−x)=150x+2100,即W(元)与x(辆)之间的函数关系式是W=150x+2100;(3)由(2)知,W=150x+2100,∵1⩽x⩽2,∴当x=1时,W取得最小值,此时W=2250,答:x为1时,总运费最少,此时总运费是2250元.【点睛】此题考核知识点:列不等式组解应用题;求函数的最小值.解题的关键是:根据题意列出不等式组,并求出解集;分析函数解析式中函数值与自变量之间的关系,从而轻易确定函数最小值.20、(1)y=-2x+1;(2)22;点P的坐标为(0,1).【解析】试题分析:(1)、将A、B两点的坐标代入解析式求出k和b的值,从而得出函数解析式;(2)、首先得出点C关于y轴的对称点为C′,然后得出点D的坐标,根据C′、D的坐标求出直线C′D的解析式,从而求出点P的坐标,然后根据勾股定理得出C′D的长度,从而得出答案.试题解析:(1)将点A、B的坐标代入y=kx+b并计算得k=-2,b=1.∴解析式为:y=-2x+1;(2)存在一点P,使PC+PD最小.

∵0(0,0),A(2,0),且C为AO的中点,

∴点C的坐标为(1,0),则C关于y轴的对称点为C′(-1,0),

又∵B(0,1),A(2,0)且D为AB的中点,∴点D的坐标为(1,2),

连接C′D,设C′D的解析式为y=kx+b,

有{2=k+b0=-k+b,解得{k=1b=1,∴y=x+1是DC′的解析式,∵x=0,∴y=1,

即21、(1)5t;(2)3小时【解析】

(1)根据两人行驶的路线围成一个直角三角形,利用勾股定理求解即可;(2)利用(1)中所求,结合两人距离为15km,即可求出时间.【详解】(1)∵甲以3km/h的速度沿正北方向前行;乙以4km/h的速度沿正东方向前行,∴两人行驶的路线围成一个直角三角形,∴过t个小时后他俩的距离是:,答:过t个小时后他俩的距离是5tkm;(2)由题意可得:5t=15,解得:t=3,答:经过3小时,他俩的距离是15km.【点睛】本题考查了勾股定理的实际应用,解题的关键是从实际问题中整理出直角三角形模型,利用勾股定理解决问题.22、的长为15米【解析】

设AB=xm,列方程解答即可.【详解】解:设AB=xm,则BC=(50-2x)m,根据题意可得,,解得:,当时,,故(不合题意舍去),答:的长为15米.【点睛】此题考查一元二次方程的实际应用,正确理解题意是列方程的关键.23、(1)证明见解析;(2)平移的距离是个单位.(3)点Q的坐标为或或

【解析】

根据AAS或ASA即可证明;首先求出点D的坐标,再求出直线的解析式,求出点的坐标即可解决问题;如图3中,作交y轴于P,作交AB于Q,则四边形PCDQ是平行四边形,求出直线PC的解析式,可得点P坐标,点C向左平移1个单位,向上平移个单位得到P,推出点D向左平移1个单位,向上平移个单位得到Q,再根据对称性可得、的坐标;【详解】证明:,,,,,≌.≌,,,,把代入得到,,,,,,,直线BC的解析式为,设直线的解析式为,把代入得到,直线的解析式为,,,平移的距离是个单位.解:如图3中,作交y轴于P,作交AB于Q,则四边形PCDQ是平行四边形,易知直线PC的解析式为,,点C向左平移1个单位,向上平移个单位得到P,点D向左平移1个单位,向上平移个单位得到Q,,当CD为对角线时,四边形是平行四边形,可得,当四边形为平行四边形时,可得,综上所述,满足条件的点Q的坐标为或或【点睛】本题考查一次函数综合题、平行四边形的判定和性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移、对称等性质解决问题,属于中考压轴题.24、(1)见解析;(2)△ABC的面积=.【解析】

(1)根据直角三角形的性质和角平分线的定义证出∠C=∠DBC,然后根据等角对等边即可证出DC=DB,然后利用三线合一即可得出结论;(2)利用30°所对的直角边是斜边的一半即可求出BD和AB,从而求出AC,然后根据三角形的面积公式计算即可.【详解】(1)证明:∵∠A=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠DBC=∠ABC=30°,∴∠C=∠DBC,∴DC=DB,∵DE⊥BC,∴EC=BE.(2)解:在Rt△ABD中,∵∠A=90°,AD=3,∠ABD=30°,∴BD=2AD=6,AB==3,∴DB=DC=6,∴AC=9,∴△ABC的面积=×=.【点睛】此题考查的是直角三角形的性质、等腰三角形的判定及性质和勾股定理,掌握30°所对的直角边是斜边的一半、等角对等边、三线合一和利用勾股定理解直角三角形是解决此题的关键.25、(1)见详解;(2)1.【解析】

(1)证出∠GBC+∠GCB=90°,由角平分线的定义得出∠ABC=2∠GBC,∠BCD=2∠DCF,得出∠ABC+∠BCD=180°,证出AB∥CD,即可得出结论;(2)由平行四边形的性质得出AD∥BC,DC=AB=,AD=BC=6,由平行线的性质和角平分线定义证出∠AEB=∠ABE,得出AE=AB=,同理:DF=DC,得出AE=DF,AF=DE,证出2AB=AD+EF,即可得出结果.【详解】(1)证明:∵BE⊥CF,∴∠BGF=90°,∴∠GBC+∠GCB=90°,∵∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,∴∠ABC=2∠GBC,∠BCD=2∠DCF,∴∠ABC+∠BCD=180°,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=,AD=BC=6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论