四川广安市2024年八年级数学第二学期期末质量跟踪监视试题含解析_第1页
四川广安市2024年八年级数学第二学期期末质量跟踪监视试题含解析_第2页
四川广安市2024年八年级数学第二学期期末质量跟踪监视试题含解析_第3页
四川广安市2024年八年级数学第二学期期末质量跟踪监视试题含解析_第4页
四川广安市2024年八年级数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川广安市2024年八年级数学第二学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.刘主任乘公共汽车从昆明到相距60千米的晋宁区办事,然后乘出租车返回,出租车的平均速度比公共汽车快20千米/时,回来时路上所花时间比去时节省了35小时,设公共汽车的平均速度为x千米/A.60x+20=C.60x+20+2.四边形ABCD中,AB∥CD,要使ABCD是平行四边形,需要补充的一个条件()A.AD=BC B.AB=CD C.∠DAB=∠ABC D.∠ABC=∠BCD3.如图,O既是AB的中点,又是CD的中点,并且AB⊥CD.连接AC、BC、AD、BD,则AC,BC,AD,BD这四条线段的大小关系是()A.全相等B.互不相等C.只有两条相等D.不能确定4.下列二次概式中,最简二次根式是()A. B. C. D.5.下列说法正确的是()A.两个全等三角形是特殊的位似图形 B.两个相似三角形一定是位似图形C.位似图形的面积比与周长比都和相似比相等 D.位似图形不可能存在两个位似中心6.目前,随着制造技术的不断发展,手机芯片制造即将进入(纳米)制程时代.已知,则用科学记数法表示为()A. B. C. D.7.将长度为3cm的线段向上平移10cm,再向右平移8cm,所得线段的长是A.3cm B.8cm C.10cm D.无法确定8.下列各式不能用平方差公式法分解因式的是()A.x2﹣4 B.﹣x2﹣y2 C.m2n2﹣1 D.a2﹣4b29.如图,在4×4的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上,则该三角形最长边的长为()A. B.3 C. D.510.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限 B.第二象限 C.第三象限 D.第四象限11.若菱形的周长为24cm,一个内角为60°,则菱形的面积为()A.4cm2 B.9cm2 C.18cm2 D.36cm212.将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=﹣3(x﹣2)2+4 B.y=﹣3(x﹣2)2﹣2C.y=﹣3(x+2)2+4 D.y=﹣3(x+2)2﹣2二、填空题(每题4分,共24分)13.若关于x的一元一次不等式组有解,则m的取值范围为__________.14.若代数式有意义,则的取值范围为__________.15.如图,平行四边形ABCD中,,,,则平行四边形ABCD的面积为______.16.已知,,,若,则可以取的值为______.17.若一次函数的图象不经过第二象限,则的取值范围为_________0.18.如图,在中,,,,将折叠,使点与点重合,得到折痕,则的周长为_____.三、解答题(共78分)19.(8分)如图,在中,,CD平分,,,E,F是垂足,那么四边形CEDF是正方形吗?说出理由.20.(8分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB交BC于点D,CD=1,延长AC到E,使AE=AB,连接DE,BE.(1)求BD的长;(2)求证:DA=DE.21.(8分)如图1,△ABC中,∠ABC=90°,AB=1,BC=2,将线段BC绕点C顺时旋转90°得到线段CD,连接AD.(1)说明△ACD的形状,并求出△ACD的面积;(2)把等腰直角三角板按如图2的方式摆放,顶点E在CB边上,顶点F在DC的延长线上,直角顶点与点C重合.从A,B两题中任选一题作答:A.如图3,连接DE,BF,①猜想并证明DE与BF之间的关系;②将三角板绕点C逆时针旋转α(0°<α<90°),直接写出DE与BF之间的关系.B.将图2中的三角板绕点C逆时针旋转α(0<α<360°),如图4所示,连接BE,DF,连接点C与BE的中点M,①猜想并证明CM与DF之间的关系;②当CE=1,CM=72时,请直接写出α的值22.(10分)淮安日报社为了了解市民“获取新闻的主要途径”,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.请根据图表信息解答下列问题:(1)统计表中的m=,n=;(2)并请补全条形统计图;(3)若该市约有80万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的主要途径”的总人数.23.(10分)南江县在“创国家级卫生城市”中,朝阳社区计划对某区域进行绿化,经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积是多少?24.(10分)在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,;(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?25.(12分)(1)如图,已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.(2)如图,用3个全等的菱形构成活动衣帽架,顶点A、E、F、C、G、H是上、下两排挂钩,根据需要可以改变挂钩之间的距离(比如AC两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间的距离为24厘米,并在点B、M处固定,则B、M之间的距离是多少?26.解方程:(1)2x2+4x+2=0;(2)x2x40

参考答案一、选择题(每题4分,共48分)1、C【解析】

设公共汽车的平均速度为x千米/时,则出租车的平均速度为x+20千米/时,根据时间关系可得出方程.【详解】解:设公共汽车的平均速度为x千米/时,则出租车的平均速度为x+20千米/时,根据题意得出:60x+20故选:C.【点睛】考核知识点:列分式方程.理解时间关系是关键.2、B【解析】

根据平行四边形的判定方法一一判断即可.【详解】∵AB∥CD,∴只要满足AB=CD,可得四边形ABCD是平行四边形,故选:B.【点睛】考查平行四边形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.3、A【解析】

根据已知条件可判断出是菱形,则AC,BC,AD,BD这四条线段的大小关系即可判断.【详解】∵O既是AB的中点,又是CD的中点,∴,∴是平行四边形.∵AB⊥CD,∴平行四边形是菱形,∴.故选:A.【点睛】本题主要考查菱形的判定及性质,掌握菱形的判定及性质是解题的关键.4、C【解析】

根据最简二次根式的定义即可求解.【详解】A.=2,故错误;B.=根号里含有小数,故错误;C.为最简二次根式,正确;D.=2,故错误;故选C.【点睛】此题主要考查最简二次根式定义,解题的关键是熟知最简二次根式的特点.5、D【解析】

根据位似图形的定义与性质对各个选项进行判断即可.【详解】A.全等三角形是特殊的相似三角形,其相似比为1,但是两个全等三角形不一定对应顶点的连线相交于一点,对应边互相平行,故本选项错误,

B.两个位似三角形的对应顶点的连线一定相交于一点,对应边一定互相平行,而相似三角形只要求形状相同、大小不等,并没有位置上的特殊要求,故本选项错误,C.位似图形的面积的比等于相似比的平方,周长的比等于相似比,故本选项错误,

D.两个位似图形不仅是相似图形,而且对应顶点的连线相交于一点,这一点是唯一的,

故本选项正确.故选D.【点睛】本题主要考查位似图形的定义与性质,1.位似图形对应线段的比等于相似比;2.位似图形的对应角都相等;3.位似图形对应点连线的交点是位似中心;4.位似图形面积的比等于相似比的平方;5.位似图形高、周长的比都等于相似比;6.位似图形对应边互相平行或在同一直线上.6、B【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:,.故选:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、A【解析】

根据平移的基本性质,可直接求得结果.【详解】平移不改变图形的形状和大小,故线段的长度不变,长度是3cm,故选A.【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8、B【解析】

利用平方差公式的结构特征判断即可.【详解】解:下列各式不能用平方差公式法分解因式的是-x2-y2,故选:B.【点睛】本题考查了用平方差公式进行因式分解,熟练掌握是解题的关键.9、B【解析】

根据风格特点利用勾股定理求出三边长,比较即可得.【详解】AB=,BC=,AC=,<<3,所以中长边的长为3,故选B.【点睛】本题考查了勾股定理的应用,熟练掌握网格的结构特征以及勾股定理的内容是解题的关键.10、C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C11、C【解析】

由菱形的性质和已知条件得出AB=BC=CD=DA=6cm,AC⊥BD,由含30°角的直角三角形的性质得出BO=AB=3cm,由勾股定理求出OA,可得BD,AC的长度,由菱形的面积公式可求解.【详解】如图所示:∵四边形ABCD是菱形∴AB=BC=CD=DA,∠BAO=∠BAD=30°,AC⊥BD,OA=AC,BO=DO∵菱形的周长为14cm∴AB=BC=CD=DA=6cm∴BO=AB=3cm∴OA==3(cm)∴AC=1OA=6cm,BD=1BO=6cm∴菱形ABCD的面积=AC×BD=18cm1.故选:C.【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质、勾股定理;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.12、D【解析】

根据“左加右减、上加下减”的原则进行解答即可.【详解】将抛物线y=﹣3x1+1向左平移1个单位长度所得直线解析式为:y=﹣3(x+1)1+1;再向下平移3个单位为:y=﹣3(x+1)1+1﹣3,即y=﹣3(x+1)1﹣1.故选D.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.二、填空题(每题4分,共24分)13、m.【解析】

首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.【详解】,解①得:x<2m,解②得:x>2﹣m,根据题意得:2m>2﹣m,解得:m.故答案为:m.【点睛】本题考查了解不等式组,解决本题的关键是熟记确定不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14、且.【解析】

根据二次根式和分式有意义的条件进行解答即可.【详解】解:∵代数式有意义,∴x≥0,x-1≠0,解得x≥0且x≠1.故答案为x≥0且x≠1.【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.15、10【解析】

从A点做底边BC的垂线AE,在三角形ABE中30度角所对的直角边等于斜边AB的一半,所以AE=2,同时AE也是平行四边形ABCD的高,所以平行四边形的面积等于5x2=10.【详解】作AE⊥BC,因为所以,AE=AB=×4=2.所以,平行四边形的面积=BC×AE=5x2=10.故答案为10【点睛】本题考核知识点:直角三角形.解题关键点:熟记含有30〬角的直角三角形的性质.16、【解析】

通过画一次函数的图象,从图象观察进行解答,根据当时函数的图象在的图象的上方进行解答即可.【详解】如下图由函数的图象可知,当时函数的图象在的图象的上方,即.

故答案为:.【点睛】本题考查的是一次函数的图象,利用数形结合进行解答是解答此题的关键.17、【解析】

根据题意可知,图象经过一三象限或一三四象限,可得b=1或b<1.【详解】解:一次函数y=2x+b的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,b=1;经过一三四象限时,b<1.故b≤1.故答案是:≤.【点睛】此题主要考查了一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.18、【解析】

首先利用勾股定理求得BC的长,然后根据折叠的性质可以得到AE=EC,则△ABE的周长=AB+BC,即可求解.【详解】解:在直角△ABC中,BC==8cm,

∵将折叠,使点与点重合,∵AE=EC,

∴△ABE的周长=AB+BE+AE=AB+BE+EC=AB+BC=6+8=14(cm).

故答案是:14cm.【点睛】本题考查了轴对称(折叠)的性质以及勾股定理,正确理解折叠中相等的线段是关键.三、解答题(共78分)19、是,理由见解析.【解析】

根据,CD平分,,,可得,,根据正方形的判定定理可得:四边形CEDF是正方形.【详解】解:四边形CEDF是正方形,理由:,CD平分,,,,,四边形CEDF是正方形,【点睛】本题主要考查正方形的判定定理,解决本题的关键是要熟练掌握正方形的判定定理.20、(1)BD=1;(1)证明见解析.【解析】

(1)根据题意可知∠CAB=60°,想办法证明DA=DB=1CD即可;(1)由题意可知三角形ABE是等边三角形,然后在证明Rt△DCA≌Rt△DCE,即可求证.【详解】(1)∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB,∴∠CAB=60°=1×∠CAD,∴∠CAD=∠DAB=30°;,∴∠DAB=∠DBA=30°,∴BD=DA=1CD=1.(1)∵AE=AB,在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠EAB=60°,∴△ABE是等边三角形,∵BC⊥AE,∴AC=CE,∵∠ACD=∠DCE=90°,CD=CD,∴Rt△DCA≌Rt△DCE(SAS),∴DA=DE.【点睛】本题主要考查了含30°角的直角三角形,解题的关键是掌握角平分线的性质以及等边三角形的性质,此题难度不大.21、(1)△ACD是等腰三角形,SΔACD=2;(2)A①DE=BF,DE⊥BF,见解析;②DE=BF,DE⊥【解析】

(1)过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.可证四边形ABCE是矩形,从而AE=BC=2,AB=CE=1,可得AE垂直平分CD,从而△ACD是等腰三角形;再根据三角形的面积公式计算即可;(2)A.①根据“SAS”可证△BCF≌△DCE,从而DE=BF,∠CBF=∠CDE,延长DE交BF于点H,由∠DEC+∠CDE=90°,可证∠BEH+∠CBF=90°,所以∠BHE=90°,即DE⊥BF;②证明方法同①;B.①延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,根据“SAS”证明△MEG≌△MBC,从而BC=GE,BC∥GE,然后再证明△ECG≌△CFD,可得CG=DF,∠ECG=∠CFD,进而可证明结论成立;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.由勾股定理列方程组求出x与y的值,根据含30°角的直角三角形的性质可知∠FCH=30°,进而可求α=60°或300°.【详解】△ACD是等腰三角形,理由如下:过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.又∵∠ABC=90°,∠BCE=90°,∴四边形ABCE是矩形,∴AE=BC=2,AB=CE=1,∴CD=1,∴AE垂直平分CD,∴AC=AD,∴△ACD是等腰三角形,∴S(2)A:①DE=BF,DE⊥BF.理由如下:由旋转可知,BC=CD=2,∠BCD=90°,∵等腰直角△CEF顶点E在CB边上,顶点F在DC的延长线上,∴CE=CF,∠BCF=∠DCE=90°.在△BCF和△DCE中,BC=DC,∠BCF=∠DCE,CF=CE,∴△BCF≌△DCE(SAS),∴DE=BF,∠CBF=∠CDE,延长DE交BF于点H,∵∠DEC+∠CDE=90°,∠DEC=∠BEH,∴∠BEH+∠CBF=90°,∴∠BHE=90°,∴DE⊥BF;②DE=BF,DE⊥BF.证明方法同①;B:①CM=12DF,CM⊥DF.延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,∵M是BE的中点,∴ME=MB.在△MEG和△MBC中,ME=MB,∠EMG=∠BMC,MG=MC,∴△MEG≌△MBC(SAS),∴CM=MG=12CG,BC=GE,BC∥GE∵BC=CD,∴EG=CD.由旋转得∠BCE=α,∵BC∥GE,∴∠CEG=180°-α,∵∠DCF=360°-∠ECF-∠BCE-∠BCD=180°-α,∴∠CEG=∠DCF,在△ECG和△CFD中,CE=CF,∠CEG=∠DCF,∠CEG=∠DCF,∴△ECG≌△CFD(SAS),∴CG=DF,∠ECG=∠CFD,∵MG=MC,∴MC=12DF∵∠ECF=90°,∴∠ECG+∠FCN=∠FCD+∠FCN=90°,∴∠CNF=90°,∴DE⊥BF;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.∵CM=72,∴DF=CG=7∴x2+y∴FH=12∴∠FCH=30°,∴∠FCD=120°,∴∠BCE=60°,∴α=60°或300°.【点睛】本题考查了旋转的性质,矩形的判定与性质,线段垂直平分线的判定与性质,全等三角形的判定与性质,勾股定理,含30°角的直角三角形的性质,以及分类讨论的数学思想,正确作出辅助线是解答本题的关键.22、(1)m=400,n=100;(2)见解析;(3)54.4万人;【解析】

(1)先根据样本中看电视获取新闻的人数与占比求出此次调查的总人数,再根据B组别的占比即可求出人数m,再用用人数将去各组别即可求出n;(2)根据数据即可补全统计图;(3)求出样本中“电脑上网”和“手机上网”作为“获取新闻的主要途径”的占比,再乘以该市总人数即可.【详解】(1)此次调查的总人数为140÷14%=1000(人),∴m=1000×40%=400,n=1000-280-400-140-80=100;(2)补全统计图如下:(3)该市将“电脑上网”和“手机上网”作为“获取新闻的主要途径”的人数约为80×=54.4(万人)【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.23、甲、乙两工程队每天能完成绿化的面积分别是100m1、50m1.【解析】

设乙工程队每天能完成绿化的面积是xm1,根据在独立完成面积为400m1区域的绿化时,甲队比乙队少用4天,列方程求解即可.【详解】设乙工程队每天能完成绿化的面积是x(m1),根据题意得,解得:x=50,经检验:x=50是原方程的解,且符合实际意义,所以甲工程队每天能完成绿化的面积是50×1=100(m1),答:甲、乙两工程队每天能完成绿化的面积分别是100m1、50m1.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.24、(1)15、1.7h;(2)当0<≤0.5时,y与x的函数关系式为:y=-50x+25;当0.5<≤1.7时,y与x的函数关系式为:y=50x-25;(3)该海巡船能接受到该信号的时间0.6(h)【解析】试题分析:(1)把A到B、B到C间的距离相加即可得到A、C两个港口间的距离,再求出海巡船的速度,然后根据时间=路程÷速度,计算即可求出a值;(2)分0<x≤0.5和0.5<x≤1.7两段,利用待定系数法求一次函数解析式求解即可;(3)根据函数解析式求出距离为15km时的时间,然后相减即可得解.试题解析:解:(1)由图可知,A、B港口间的距离为25,B、C港口间的距离为60,所以,A、C港口间的距离为:25+60=15km,海巡船的速度为:25÷0.5=50km/h,∴a=15÷50=1.7h.故答案为:15,1.7h;(2)当0<x≤0.5时,设y与x的函数关系式为:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论