2024届湖北省武汉梅苑学校数学八年级下册期末联考试题含解析_第1页
2024届湖北省武汉梅苑学校数学八年级下册期末联考试题含解析_第2页
2024届湖北省武汉梅苑学校数学八年级下册期末联考试题含解析_第3页
2024届湖北省武汉梅苑学校数学八年级下册期末联考试题含解析_第4页
2024届湖北省武汉梅苑学校数学八年级下册期末联考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉梅苑学校数学八年级下册期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知,则有()A. B. C. D.2.如图,将▱ABCD沿对角线AC进行折叠,折叠后点D落在点F处,AF交BC于点E,有下列结论:①△ABF≌△CFB;②AE=CE;③BF∥AC;④BE=CE,其中正确结论的个数是()A.1 B.2 C.3 D.43.将直线y=x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是()A.,1 B.-,1 C.-,-1 D.,-14.一个正多边形的每一个外角的度数都是60°,则这个多边形的边数是:()A.8 B.7 C.6 D.55.若不等式组恰有两个整数解,则a的取值范围是()A.-1≤a<0 B.-1<a≤0 C.-1≤a≤0 D.-1<a<06.已知点和点在函数的图像上,则下列结论中正确的()A. B. C. D.7.方程中二次项系数一次项系数和常数项分别是()A.1,-3,1 B.-1,-3,1 C.-3,3,-1 D.1,3,-18.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是()A.(﹣1,) B.(﹣,1) C.(,﹣1) D.(1,﹣)9.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤2010.若关于的分式方程的根是正数,则实数的取值范围是().A.,且 B.,且C.,且 D.,且11.如图,在4×4的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上,则该三角形最长边的长为()A. B.3 C. D.512.矩形一个内角的平分线把矩形的一边分成和,则矩形的周长为()A.和 B. C. D.以上都不对二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,矩形纸片OABC的顶点A,C分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B′处,折痕交AB于点D.若OC=9,,则折痕CD所在直线的解析式为____.14.已知二次函数y=-x-2x+3的图象上有两点A(-7,y1),B(-8,y2),则y1▲15.如果等腰直角三角形的一条腰长为1,则它底边的长=________.16.在平面直角坐标系中,点(﹣7,m+1)在第三象限,则m的取值范围是_____.17.在平面直角坐标系中,先将函数y=2x+3的图象向下平移3个单位长度,再沿y轴翻折,所得函数对应的解析式为_____.18.平面直角坐标系中,将直线l:y=2x-1沿y轴向下平移b个单位长度后后得到直线l′,点A(m,n)是直线l′上一点,且2m-n=3,则b=_______.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.20.(8分)正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.

21.(8分)为了解市民对“雾霾天气的主要原因”的认识,某调查公司随机抽查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数)大气气压低,空气不流动100底面灰尘大,空气湿度低汽车尾气排放工厂造成的污染140其他80调查结果扇形统计图请根据图表中提供的信息解答下列问题:(1)填空:__________,__________.扇形统计图中组所占的百分比为__________%.(2)若该市人口约有100万人,请你估计其中持组“观点”的市民人数约是__________万人.(3)若在这次接受调查的市民中,随机抽查一人,则此人持组“观点”的概率是__________.22.(10分)计算:16﹣(π﹣2019)0+2﹣1.23.(10分)如图,在边长为1个单位长度的小正方形组成的两个中,点都是格点.(1)将向左平移6个单位长度得到.请画出;(2)将绕点按逆时针方向旋转得到,请画出.24.(10分)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E.F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.25.(12分)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:武术、D:跑步四种活动项目为了解学生最喜欢哪一种活动项目每人只选取一种随机抽取了m名学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题:______;在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为______;请把图的条形统计图补充完整;若该校有学生1200人,请你估计该校最喜欢武术的学生人数约是多少?26.小明遇到这样一个问题:如图,点是中点,,求证:.小明通过探究发现,如图,过点作.交的延长线于点,再证明,使问题得到解决。(1)根据阅读材料回答:的条件是______(填“”“”“”“”或“”)(2)写出小明的证明过程;参考小明思考问题的方法,解答下列问题:(3)已知,中,是边上一点,,,分别在,上,连接.点是线段上点,连接并延长交于点,.如图,当时,探究的值,并说明理由:

参考答案一、选择题(每题4分,共48分)1、A【解析】

求出m的值,求出2)的范围5<m<6,即可得出选项.【详解】m=(-)×(-2),=,

=×3=2=,

∵,

∴5<<6,

即5<m<6,

故选A.【点睛】本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<<6,题目比较好,难度不大.2、C【解析】

根据SSS即可判定△ABF≌△CFB,根据全等三角形的性质以及等式性质,即可得到EC=EA,根据∠EBF=∠EFB=∠EAC=∠ECA,即可得出BF∥AC.根据E不一定是BC的中点,可得BE=CE不一定成立.【详解】解:由折叠可得,AD=AF,DC=FC,又∵平行四边形ABCD中,AD=BC,AB=CD,∴AF=BC,AB=CF,在△ABF和△CFB中,∴△ABF≌△CFB(SSS),故①正确;∴∠EBF=∠EFB,∴BE=FE,∴BC﹣BE=FA﹣FE,即EC=EA,故②正确;∴∠EAC=∠ECA,又∵∠AEC=∠BEF,∴∠EBF=∠EFB=∠EAC=∠ECA,∴BF∥AC,故③正确;∵E不一定是BC的中点,∴BE=CE不一定成立,故④错误;故选:C.【点睛】本题考查的是全等三角形的性质和平行四边形的性质,熟练掌握二者是解题的关键.3、D【解析】分析:由已知条件易得,直线过点(0,1),结合直线是由直线向右平移4个单位长度得到的可知直线必过点(4,1),把和点(4,1)代入中解出b的值即可.详解:∵在直线中,当时,,∴直线过点(0,1),又∵直线是由直线向右平移4个单位长度得到的,∴,且直线过点(4,1),∴,解得:,∴.故选D.点睛:“由直线过点(0,1)结合已知条件得到,直线必过点(4,1)”是解答本题的关键.4、C【解析】分析:正多边形的外角计算公式为:,根据公式即可得出答案.详解:根据题意可得:n=360°÷60°=6,故选C.点睛:本题主要考查的是正多边形的外角计算公式,属于基础题型.明确公式是解决这个问题的关键.5、A【解析】

首先解不等式组求得不等式组的解集,然后根据不等式组有两个整数解即可确定整数解,从而得到关于a的不等式,求得a的范围.【详解】,解①得x<1,解②得x>a-1,则不等式组的解集是a-1<x<1.又∵不等式组有两个整数解,∴整数解是2,-1.∴-2≤a-1-<-1,解得:-1≤a<2.故选A.【点睛】本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6、B【解析】

根据一次函数的增减性可判断m、n的大小.【详解】∵一次函数的比例系数为0∴一次函数y随着x的增大而增大∵-1<1∴m<n故选:B【点睛】本题考查一次函数的增减性,解题关键是通过一次函数的比例系数判定y随x的变化情况.7、A【解析】

先把方程化为一般形式,然后可得二次项系数,一次项系数及常数项.【详解】解:把方程转化为一般形式得:x2−3x+1=0,∴二次项系数,一次项系数和常数项分别是1,−3,1.故选:A.【点睛】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.8、B【解析】

过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.【详解】如图,过点A′作A′C⊥x轴于C,∵B(2,0),∴等边△AOB的边长为2,又∵∠A′OC=90−60=30,∴OC=2×cos30=2×=,A′C=2×=1,∵点A′在第二象限,∴点A′(﹣,1).故选:B.【点睛】本题考查了坐标与图形变化−旋转,等边三角形的性质,根据旋转的性质求出∠A′OC=30,然后解直角三角形求出点A′的横坐标与纵坐标的长度是解题的关键.9、A【解析】若反比例函数与三角形交于A(4,5),则k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.故选A.10、D【解析】分析:利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.详解:方程两边同乘1(x﹣1)得:m=1(x-1)﹣4(x-1),解得:x=.∵≠1,∴m≠1,由题意得:>0,解得:m<6,实数m的取值范围是:m<6且m≠1.故选D.点睛:本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.11、B【解析】

根据风格特点利用勾股定理求出三边长,比较即可得.【详解】AB=,BC=,AC=,<<3,所以中长边的长为3,故选B.【点睛】本题考查了勾股定理的应用,熟练掌握网格的结构特征以及勾股定理的内容是解题的关键.12、A【解析】

利用角平分线得到∠ABE=∠CBE,矩形对边平行得到∠AEB=∠CBE.那么可得到∠ABE=∠AEB,可得到AB=AE.那么根据AE的不同情况得到矩形各边长,进而求得周长.【详解】∵矩形ABCD中BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE.∴AB=AE.平分线把矩形的一边分成3cm和5cm.当AE=3cm时:则AB=CD=3cm,AD=CB=8cm则矩形的周长是:22cm;当AE=5cm时:AB=CD=5cm,AD=CB=8cm,则周长是:26cm.故选A.【点睛】本题主要运用了矩形性质,角平分线的定义和等角对等边知识,正确地进行分情况讨论是解题的关键.二、填空题(每题4分,共24分)13、y=x+9.【解析】

根据OC=9,先求出BC的长,继而根据折叠的性质以及勾股定理的性质求出OB′的长,求得AB′的长,设AD=m,则B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的长,进而求得点D的坐标,再利用待定系数法进行求解即可.【详解】∵OC=9,,∴BC=15,∵四边形OABC是矩形,∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,∴C(0,9),∵折叠,∴B′C=BC=15,B′D=BD,在Rt△COB′中,OB′==12,∴AB′=15-12=3,设AD=m,则B′D=BD=9-m,Rt△AB′D中,AD2+B′A2=B′D2,即m2+32=(9-m)2,解得m=4,∴D(15,4)设CD所在直线解析式为y=kx+b,把C、D两点坐标分别代入得:,解得:,∴CD所在直线解析式为y=x+9,故答案为:y=x+9.【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,待定系数法求一次函数的解析式,求出点D的坐标是解本题的关键.14、>。【解析】根据已知条件求出二次函数的对称轴和开口方向,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系:∵二次函数y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y随x的增大而增大。∵点A(﹣7,y1),B(﹣8,y2)是二次函数y=﹣x2﹣2x+3的图象上的两点,且﹣7>﹣8,∴y1>y2。15、【解析】

根据等腰直角三角形两腰相等及勾股定理求解即可.【详解】解:∵等腰直角三角形的一腰长为1,则另一腰长也为1∴由勾股定理知,底边的长为故答案为:.【点睛】本题考查了等腰三角形的腰相等,勾股定理等知识点,熟练掌握基本的定理及图形的性质是解决此类题的关键.16、m<-1【解析】

根据第三象限内点的横坐标是负数,纵坐标是正数列出不等式,然后求解即可.【详解】:∵点(,)在第三象限,

∴m+1<0,

解不等式得,m<-1,

所以,m的取值范围是m<-1.

故答案为m<-1.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).17、y=-2x.【解析】

利用平移规律得出平移后的关系式,再利用关于y轴对称的性质得出答案。【详解】将函数y=2x+3的图象向下平移3个单位长度,所得的函数是y=2x+3-3,即y=2x将该函数的图象沿y轴翻折后所得的函数关系式y=2(-x),即y=-2x,故答案为y=-2x.【点睛】本题主要考查了一次函数图象与几何变换,正确得出平移后的函数关系式是解题的关键。18、2【解析】

先写出直线l′的解析式为y=2x-1-b,代入点A的坐标得到n=2m-1-b,因为2m-n=3,即可解答出b的值.【详解】∵直线l′为y=2x-1沿y轴向下平移b个单位长度,∴直线l′:y=2x-1-b,∵点A(m,n)是直线l′上一点,∴n=2m-1-b又∵且2m-n=3,解得b=2.故答案为:2.【点睛】此题考查一次函数,解题关键在于一次函数图象的平移.三、解答题(共78分)19、(1)见解析;(2)能,t=10;(3)t=或12.【解析】

(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.【详解】解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=AC=×60=30cm,∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;(2)能,∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;(3)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=,②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即,解得:t=12,综上所述,当t=或12时,△DEF为直角三角形.20、(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】

(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2)(3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.

【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.21、5013016%280.26【解析】

(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.【详解】解:(1)总人数是:100÷20%=500(人),则m=500×10%=50(人),C组的频数n=500﹣100﹣50﹣140﹣80=130(人),E组所占的百分比是:×100%=16%;故答案为:50,130,16%;(2)100×=28(万人);所以持D组“观点”的市民人数为28万人;(3)随机抽查一人,则此人持C组“观点”的概率是.答:随机抽查一人,则此人持C组“观点”的概率是.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力,以及列举法求概率.22、3【解析】

本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=4-1+1【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.23、(1)图见详解;(1)图见详解.【解析】

(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;

(1)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A1B1C1.【详解】解:(1)如图所示:△A1B1C1,即为所求;

(1)如图所示:△A1B1C1,即为所求.【点睛】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.24、(1)证明见解析(2)四边形A1BCE是菱形【解析】

(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形.【详解】(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF与△BA1D中,,∴△BCF≌△BA1D;(2)解:四边形A1BCE是菱形,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°﹣α,∵∠C=α,∴∠A1=α,∴∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,∴∠A1=∠C,∠A1BC=∠A1EC,∴四边形A1BCE是平行四边形,∴A1B=B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论