2024届广东省深圳市育才第二中学八年级下册数学期末检测模拟试题含解析_第1页
2024届广东省深圳市育才第二中学八年级下册数学期末检测模拟试题含解析_第2页
2024届广东省深圳市育才第二中学八年级下册数学期末检测模拟试题含解析_第3页
2024届广东省深圳市育才第二中学八年级下册数学期末检测模拟试题含解析_第4页
2024届广东省深圳市育才第二中学八年级下册数学期末检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省深圳市育才第二中学八年级下册数学期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤32.如图,在▱ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有()A.2个 B.3个 C.4个 D.5个3.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则BC的长为()A. B. C.1 D.24.下列式子:①y=3x﹣5;②y=1x;③y=x-1;④y2=x;⑤y=|x|A.2个 B.3个 C.4个 D.5个5.如图,已知线段AB=12,点M、N是线段AB上的两点,且AM=BN=2,点P是线段MN上的动点,分别以线段AP、BP为边在AB的同侧作正方形APDC、正方形PBFE,点G、H分别是CD、EF的中点,点O是GH的中点,当P点从M点到N点运动过程中,OM+OB的最小值是()A.10 B.12 C.2 D.126.如图,点A在双曲线上,点B在双曲线上,且AB∥y轴,C、D在y轴上,若四边形ABCD为矩形,则它的面积为()A.1.5 B.1 C.3 D.27.下列不等式的变形中,不正确的是()A.若,则 B.若,则C.若,则 D.若,则8.如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间 B.3和4之间 C.﹣5和﹣4之间 D.4和5之间9.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.10.若实数3是不等式2x–a–2<0的一个解,则a可取的最小正整数为(

)A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.如图,∠DAB=∠CAE,请补充一个条件:________________,使△ABC∽△ADE.12.如图,平行四边形ABCO的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c),则顶点坐标B的坐标为_________.13.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.14.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=10,则DOE的周长为_____.15.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________

16.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____边形.17.某商场利用“五一”开展促销活动:一次性购买某品牌服装件,每件仅售元,如果超过件,则超过部分可享受折优惠,顾客所付款(元)与所购服装件之间的函数解析式为__________.18.不等式组的解集为______.三、解答题(共66分)19.(10分)八年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名八年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了多少名学生?(2)求扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数;(3)请将条形统计图补充完整.20.(6分)如图,在中,为的中点,,.动点从点出发,沿方向以的速度向点运动;同时动点从点出发,沿方向以的速度向点运动,运动时间是秒.(1)用含的代数式表示的长度.(2)在运动过程中,是否存在某一时刻,使点位于线段的垂直平分线上?若存在,求出的值;若不存在,请说明理由.(3)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.(4)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.21.(6分)如图所示,正方形ABCD中,点E、F、G分别是边AD、AB、BC的中点,连接EP、FG.(1)如图1,直接写出EF与FG的关系____________;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,连接EH.①求证:△FFE≌△PFG;②直接写出EF、EH、BP三者之间的关系;(3)如图3,若点P为CB延长线上的一动点,连接FP,按照(2)中的做法,在图(3)中补全图形,并直接写出EF、EH、BP三者之间的关系.22.(8分)已知x=,y=.(1)x+y=,xy=;(2)求x3y+xy3的值.23.(8分)小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离(千米)和所用的时间(小时)之间的函数关系如图所示。(1)小李从乙地返回甲地用了多少小时?(2)求小李出发小时后距离甲地多远?24.(8分)今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了_________名学生进行调查统计;(2)将条形统计图补充完整,扇形统计图中D类所对应的扇形圆心角大小为_________;(3)如果该校共有3000名学生,请你估计该校B类学生约有多少人?25.(10分)列方程或方程组解应用题:几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.26.(10分)如图,已知平行四边形ABCD中,∠ABC的平分线与边CD的延长线交于点E,与AD交于点F,且AF=DF,①求证:AB=DE;②若AB=3,BF=5,求△BCE的周长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.详解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选D.点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2、C【解析】

由翻折的性质可知,EB=EB',由E为AB的中点,得到EA=EB',根据三角形外角等于不相邻的两内角之和,找到与∠FEB相等的角,再根据AB∥CD,也可得到∠FEB=∠ACD.【详解】解:由翻折的性质可知:EB=EB',∠FEB=∠FEB';∵E为AB的中点,∴AE=BE=EB',∴∠EAB'=∠EB'A,∵∠BEB'=∠EAB'+∠EB'A,∴2∠FEB=2∠EAB=2∠EB'A,∴∠FEB=∠EAB=∠EB'A,∵AB∥CD,∴∠B'AE=∠ACD,∴∠FEB=∠ACD,∴与∠FEB相等的角有∠FEB',∠EAB',∠EB'A,∠ACD,∴故选C.【点睛】此题考查翻折的性质,EA=EB'是正确解答此题的关键3、A【解析】∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴BC=,故选A.4、C【解析】

根据函数的定义逐一进行判断即可得.【详解】①y=3x﹣5,y是x的函数;②y=1x③y=x-1④y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;⑤y=|x|,y是x的函数,故选C.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5、C【解析】

作点M关于直线XY的对称点M′,连接BM′,与XY交于点O,由轴对称性质可知,此时OM+OB=BM′最小,根据勾股定理即可求出BM'的值.【详解】解:作点M关于直线XY的对称点M′,连接BM′,与XY交于点O.O′O″⊥A于O″B.GL⊥AB于L,HT⊥AB于T.由轴对称性质可知,此时OM+OB=BM′最小(O′O″=(GL+HT)=6),在Rt△BMM′中,MM′=2O′O″=2×6=12,BM=10,由勾股定理得:BM′==2,∴OM+OB的最小值为2,故选C.【点睛】本题考查了正方形的性质和轴对称及勾股定理等知识的综合应用.综合运用这些知识是解决本题的关键.6、D【解析】

根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【详解】过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3−1=2.故选D.【点睛】本题考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,解本题的关键是正确理解k的几何意义.7、D【解析】

根据不等式的基本性质进行判断。【详解】A.∴,故A正确;B.,在不等式两边同时乘以(-1)则不等号改变,∴,故B正确;C.,在不等式两边同时乘以(-3)则不等号改变,∴,故C正确;D.,在不等式两边同时除以(-3)则不等号改变,∴,故D错误所以,选项D不正确。【点睛】主要考查了不等式的基本性质:1、不等式两边同时加(或减去)同一个数(或式子),不等号方向不变;2、不等式两边同时乘以(或除以)同一个正数,不等号方向不变;3、不等式两边同时乘以(或除以)同一个负数,不等号方向改变。8、A【解析】

由P点坐标利用勾股定理求出OP的长,再根据已知判定A点的位置求解即可.【详解】因为点坐标为,所以,故.因为,,,即,点在x轴的负半轴,所以点的横坐标介于﹣4和﹣3之间.故选A.【点睛】本题主要考查平面直角坐标系的有关概念和圆的基本概念.9、B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.10、D【解析】解:根据题意,x=3是不等式的一个解,∴将x=3代入不等式,得:6﹣a﹣2<0,解得:a>4,则a可取的最小正整数为5,故选D.点睛:本题主要考查不等式的整数解,熟练掌握不等式解得定义及解不等式的能力是解题的关键.二、填空题(每小题3分,共24分)11、解:∠D=∠B或∠AED=∠C.【解析】

根据相似三角形的判定定理再补充一个相等的角即可.【详解】解:∵∠DAB=∠CAE

∴∠DAE=∠BAC

∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.

故答案为∠D=∠B(答案不唯一).12、(a+b,c)【解析】

平行四边形的对边相等,B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,从而确定B点的坐标.【详解】∵四边形ABCO是平行四边形,∴AO=BC,AO∥BC,∴B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,∵O,A,C的坐标分别是(0,0),(a,0),(b,c),∴B点的坐标为(a+b,c).故答案是:(a+b,c).【点睛】本题考查平行四边形的性质,平行四边形的对边相等,以及考查坐标与图形的性质等知识点.13、10【解析】

本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R−2)2,解得R=5,∴该光盘的直径是10cm.故答案为:10.【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.14、1【解析】

由平行四边形的性质得出AB=CD,AD=BC,OB=OD=BD=5,得出BC+CD=18,证出OE是△BCD的中位线,DE=CD,由三角形中位线定理得出OE=BC,△DOE的周长=OD+OE+DE=OD+(BC+CD),即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD=BD=5,∵平行四边形ABCD的周长为36,∴BC+CD=18,∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=OD+(BC+CD)=5+9=1;故答案为:1.【点睛】本题考查平行四边形的性质、三角形中位线的性质,熟练运用平行四边形和三角形中位线的性质定理是解题的关键.15、【解析】

根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.【详解】解:∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点,∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP×BC=AB×AC,∴AP×BC=AB×AC,在Rt△ABC中,由勾股定理,得BC==10,∵AB=6,AC=8,∴10AP=6×8,∴AP=∴AM=,故答案为:.考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式16、六【解析】

n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【详解】设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故答案为:六.【点睛】本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.17、【解析】

因为所购买的件数x≥3,所以顾客所付款y分成两部分,一部分是3×80=240,另一部分是(x-3)×80×0.8,让它们相加即可.【详解】解:∵x≥3,∴y=3×80+(x-3)×80×0.8=64x+48(x≥3).故答案是:.【点睛】此题主要考查利用一次函数解决实际问题,找到所求量的等量关系是解决问题的关键.18、1<x≤1【解析】解不等式x﹣3(x﹣2)<1,得:x>1,解不等式,得:x≤1,所以不等式组解集为:1<x≤1,故答案为1<x≤1.三、解答题(共66分)19、(1)560人;(2)54°;(3)补图见解析.【解析】分析:(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;(2)由“主动质疑”占的百分比乘以360°即可得到结果;(3)求出“讲解题目”的学生数,补全统计图即可;详解:(1)根据题意得:224÷40%=560(名),则在这次评价中,一个调查了560名学生;故答案为:560;(2)根据题意得:×360°=54°,则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;故答案为:54;(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:点睛:此题考查了频率(数)分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.20、(1)CP=8-3t;(2)见解析;(3)见解析;(4)见解析.【解析】

(1)直接利用即可求解;(2)根据线段垂直平分线的性质可得,列方程求解即可;(3)根据全等三角形的性质可得若,因为,,所以只需,列方程求出的值即可;(4)若,因为,所以需满足且,即且,没有符合条件的t的值,故不存在.【详解】解:(1);(2)若点位于线段的垂直平分线上,则,即,解得.所以存在,秒时点位于线段的垂直平分线上.(3)若,因为,,所以只需,即,解得,所以存在.(4)若,因为,所以需满足且,即且,所以不存在.【点睛】本题考查全等三角形的判定和性质及动点运动问题,对于运动型的问题,关键是用时间t表示出相应的线段的长度,能根据题意列方程求解.21、(1)EF⊥FG,EF=FG;(2)详见解析;(3)补全图形如图3所示,EF+BP=EH.【解析】

(1)根据线段中点的定义求出AE=AF=BF=BG,得出∠AFE=∠AEF=∠BFG=∠BGF=45°,求出∠EFG的度数,由“SAS”证得△AEF和△BFG全等,得出EF=FG,即可得出结果;(2)①由旋转的性质得出∠PFH=90°,FP=FH,证出∠GFP=∠EFH,由SAS即可得出△HFE≌△PFG;②由全等三角形的性质得出EH=PG,由等腰直角三角形的性质得出EF=AF=BG,因此BG=EF,再由BG+GP=BP,即可得出结论;(3)根据题意作出图形,然后同(2)的思路求解即可.【详解】解:(1)如图1所示:∵点E、F、G分别是边AD、AB、BC的中点,∴AE=AF=BF=BG,∵四边形ABCD是正方形,∴∠AFE=∠AEF=∠BFG=∠BGF=45°,∴∠EFG=180°-∠AFE-∠BFG=180°-45°-45°=90°,∴EF⊥FG,在△AEF和△BFG中,,∴△AEF≌△BFG(SAS),∴EF=FG,故答案为EF⊥FG,EF=FG;(2)如图2所示:①证明:由(1)得:∠EFG=90°,EF=FG,∵将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,∴∠PFH=90°,FP=FH,∵∠GFP+∠PFE=90°,∠PFE+∠EFH=90°,∴∠GFP=∠EFH,在△HFE和△PFG中,,∴△HFE≌△PFG(SAS);②解:由①得:△HFE≌△PFG,∴EH=PG,∵AE=AF=BF=BG,∠A=∠B=90°,∴EF=AF=BG,∴BG=EF,∵BG+GP=BP,∴EF+EH=BP;(3)解:补全图形如图3所示,EF+BP=EH.理由如下:由(1)得:∠EFG=90°,EF=FG,∵将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,∴∠PFH=90°,FP=FH,∵∠EFG+∠GFH=∠EFH,∠PFH+∠GFH=GFP,∴∠GFP=∠EFH,在△HFE和△PFG中,,∴△HFE≌△PFG(SAS),∴EH=PG,∵AE=AF=BF=BG,∠A=∠ABC=90°,∴EF=AF=BG,∴BG=EF,∵BG+BP=PG,∴EF+BP=EH.【点睛】本题是四边形综合题目,考查了全等三角形的判定与性质,正方形的性质,等腰直角三角形的判定与性质,勾股定理,旋转的性质等知识;本题综合性强,作辅助线构造出全等三角形是解题的关键.22、(1)2,1;(2)10.【解析】

(1)将x、y的值分别代入两个式子,利用二次根式的运算法则进行计算即可;(2)原式先进行变形,继而利用整体思想将(1)中的结果代入进行计算即可.【详解】(1)∵x=,y=+,∴x+y=(-)+(+)=2,xy=(-)×(+)=3-2=1,故答案为2,1;(2)x3y+xy3=xy(x2+y2)=xy[(x+y)2-2xy]=1×[(2)2-2×1]=10.【点睛】本题考查了二次根式的混合运算,涉及了代数式求值,因式分解,完全平方公式的变形等,正确把握相关的运算法则是解题的关键.23、(1)小时;(2)小李出发小时后距离甲地千米;【解析】

(1)根据题意可以得到小李从乙地返回甲地用了多少小时;(2)根据题意可以求得小李返回时对应的函数解析式,从而可以求得小李出发5小时后距离甲地的距离;【详解】解:(1)由题意可得,(小时),答:小李从乙地返回甲地用了小时;(2)设小李返回时直线解析式为,将分别代入得,,解得,,,当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论