广西壮族自治区百色市平果县2024年数学八年级下册期末统考试题含解析_第1页
广西壮族自治区百色市平果县2024年数学八年级下册期末统考试题含解析_第2页
广西壮族自治区百色市平果县2024年数学八年级下册期末统考试题含解析_第3页
广西壮族自治区百色市平果县2024年数学八年级下册期末统考试题含解析_第4页
广西壮族自治区百色市平果县2024年数学八年级下册期末统考试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区百色市平果县2024年数学八年级下册期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=115°,则∠BCE=()A.25° B.30° C.35° D.55°2.一组数据8,7,6,7,6,5,4,5,8,6的众数是()A.8 B.7 C.6 D.53.将一个边长为4cn的正方形与一个长,宽分別为8cm,2cm的矩形重叠放在一起,在下列四个图形中,重叠部分的面积最大的是()A. B. C. D.4.如图,已知的顶点A、C分别在直线和上,O是坐标原点,则对角线OB长的最小值为()A.4 B.5 C.6 D.75.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是()A.平均数 B.中位数 C.众数 D.方差6.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为()A.4π B.4π C.8π D.8π7.如图,□ABCD的对角线AC与BD相交于点O,AB⊥AC.若,,则BD的长为()A. B. C. D.8.下列图形是物理学中的力学、电学等器件的平面示意图,从左至右分别代表小车、音叉、凹透镜和砝码,其中是中心对称图形的是()A. B. C. D.9.若在实数范围内有意义,则x的取值范围是()A. B. C. D.x<310.如图,在中,,,,将绕点逆时针旋转得到△,连接,则的长为A. B. C.4 D.6二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为___12.如图,菱形ABCD的两条对角线相交于点O,若AC=6,BD=2,则菱形ABCD的周长是_____。13.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是__.14.一次函数y=-2x+4的图象与坐标轴所围成的三角形面积是_____.15.一次函数图象经过一、三、四象限,则反比例函数的函数值随的增大而__________.(填增大或减小)16.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.17.如图,将矩形ABCD沿直线BD折叠,使C点落在C′处,BC′交边AD于点E,若∠ADC′=40°,则∠ABD的度数是_____.18.已知∠ABC=60°,点D是其角平分线上一点,BD=CD=6,DE//AB交BC于点E.若在射线BA上存在点F,使,请写出相应的BF的长:BF=_________三、解答题(共66分)19.(10分)如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.(1)求证:四边形ADCE是矩形;(2)①若AB=17,BC=16,则四边形ADCE的面积=.②若AB=10,则BC=时,四边形ADCE是正方形.20.(6分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.21.(6分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:①菜地离小明家多远?小明走到菜地用了多少时间?②小明给菜地浇水用了多少时间?③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?22.(8分)如图1,,是线段上的一个动点,分别以为边,在的同侧构造菱形和菱形,三点在同一条直线上连结,设射线与射线交于.(1)当在点的右侧时,求证:四边形是平形四边形.(2)连结,当四边形恰为矩形时,求的长.(3)如图2,设,,记点与之间的距离为,直接写出的所有值.23.(8分)佳佳某天上午9时骑自行车离开家,17时回家,他有意描绘了离家的距离与时同的变化情况,如图所示.(1)图象表示了哪两个变量的关系?(2)10时和11时,他分别离家多远?(3)他最初到达离家最远的地方是什么时间?离家多远?(4)11时到13时他行驶了多少千米?24.(8分)如图,函数的图象经过,,其中,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连结AD,DC,CB,AC与BD相交于点E.(1)若的面积为4,求点B的坐标;(2)四边形ABCD能否成为平行四边形,若能,求点B的坐标,若不能说明理由;(3)当时,求证:四边形ABCD是等腰梯形.25.(10分)学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图所示的是他们的部分对话内容,面对小龙的问题,亮亮也犯了难.(1)请聪明的你用所学的方程知识帮小龙计算一下,他是否符合学校广播站的应聘条件?(2)小龙和奶奶各读一篇文章,已知奶奶所读文章比小龙所读文章至少多了3200个字,但奶奶所用的时间是小龙的2倍,则小龙至少读了多少分钟?26.(10分)如图,在正方形中,已知于.(1)求证:;(2)若,求的长.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

由AD∥BC得到∠B=180°-∠A,而∠A=115°,由此可以求出∠B,又CE⊥AB,所以在三角形BCE中利用三角形内角和即可求出∠BCE.【详解】解:∵AD∥BC,

∴∠B=180°-∠A=65°,

又CE⊥AB,

∴∠BCE=90°-65°=25°.

故选:A.【点睛】此题主要考查平行四边形的性质和直角三角形的性质.2、C【解析】

根据众数的含义:在一组数据中出现次数最多的数叫做这组数据的众数.【详解】在这组数据中6出现3次,次数最多,所以众数为6,故选:C.【点睛】本题考查众数的定义,学生们熟练掌握即可解答.3、B【解析】

分别计算出各个图形的重叠部分面积即可求解.【详解】A.重叠部分为矩形,长是4宽是2,,所以面积为4×2=8;B.重叠部分是平行四边形,与正方形边重合部分的长大于2,高是4,所以面积大于8;C.图C与图B对比,因为图C的倾斜度比图B的倾斜度小,所以,图C的底比图B的底小,两图为等高不等底,所以图C阴影部分的面积小于图B阴影部分的面积;D.如图,BD=42+4∴GH=42∴S重叠部分=2×(42+42故选B.【点睛】本题主要考查平行四边形的、矩形及梯形的面积的运算,分别对选项进行计算判断即可.4、B【解析】

当B在x轴上时,对角线OB长度最小,由题意得出∠ADO=∠CED=90°,OD=1,OE=4,由平行四边形的性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果.【详解】当B在x轴上时,对角线OB长度最小,如图所示:直线x=1与x轴交于点D,直线x=4与x轴交于点E,根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,四边形ABCD是平行四边形,∴OA∥BC,OA=BC,∴∠AOD=∠CBE,在△AOD和△CBE中,,∴△AOD≌△CBE(AAS),∴OD=BE=1,∴OB=OE+BE=5,故答案为:5.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.5、B【解析】

由于比赛设置了3个获奖名额,共有7名选手参加,故应根据中位数的意义分析.【详解】解:因为3位获奖者的分数肯定是7名参赛选手中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6、D【解析】解:Rt△中,∠ACB=90°,,∴AB=4,∴所得圆锥底面半径为5,∴几何体的表面积,故选D.7、B【解析】

根据勾股定理先求出BO的长,再根据平行四边形的性质即可求解.【详解】∵,∴AO=3,∵AB⊥AC,∴BO==5∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.8、C【解析】

根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C.【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、B【解析】

根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,3-x≥0,

解得,x≤3,

故选:B.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.10、B【解析】

根据条件求出∠BAC=90°,从而利用勾股定理解答即可.【详解】将绕点逆时针旋转得到△,,,,,,,在中,.故选:.【点睛】本题考查旋转和勾股定理,解题关键是掌握旋转的性质和勾股定理公式.二、填空题(每小题3分,共24分)11、【解析】

设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度,【详解】∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.12、【解析】

根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.【详解】解:∵四边形ABCD是菱形,∴AO=AC=3,DO=BD=1,AC⊥BD,在Rt△AOD中,∴菱形ABCD的周长为.【点睛】本题考查了菱形的性质,解答本题的关键是掌握菱形的对角线互相垂直且平分.13、【解析】

根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【详解】∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为.【点睛】考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.14、4【解析】【分析】结合一次函数y=-2x+4的图象可以求出图象与x轴的交点为(2,0),以及与y轴的交点为(0,4),可求得图象与坐标轴所围成的三角形的面积.【详解】令y=0,则x=2;令x=0,则y=4,∴一次函数y=-2x+4的图象与x轴的交点为(2,0),与y轴的交点为(0,4).∴S=.故正确答案为4.【点睛】本题考查了一次函数图象与坐标轴的交点坐标.关键令y=0,可求直线与x轴的交点坐标;令x=0,可求直线与y轴的交点坐标.15、增大【解析】

根据一次函数图象经过一、三、四象限,可以得出>0,b<0,则反比例函数的系数,结合x>0即可得到结论.【详解】∵一次函数图象经过一、三、四象限,∴>0,b<0,∴,∴又x>0,∴反比例函数图象在第四象限,且y随着x的增大而增大,故答案为:增大.【点睛】本题考查了一次函数的图象和性质,反比例函数的图象和性质,掌握一次函数,反比例函数的图象和性质是解题的关键.16、【解析】试题解析:设BE与AC交于点P,连接BD,∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的边长为1,∴AB=1.又∵△ABE是等边三角形,∴BE=AB=1.故所求最小值为1.考点:轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.17、65°【解析】

直接利用翻折变换的性质得出∠2=∠3=25°,进而得出答案.【详解】解:由题意可得:∠A=∠C′=90°,∠AEB=∠C′ED,故∠1=∠ADC′=40°,则∠2+∠3=50°,∵将矩形ABCD沿直线BD折叠,使C点落在C′处,∴∠2=∠3=25°,∴∠ABD的度数是:∠1+∠2=65°,故答案为65°.【点睛】本题考查了矩形的性质、翻折变换的性质,正确得出∠2=∠3=25°是解题关键.18、2或4.【解析】

过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.【详解】如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此时S△DCF1=S△BDE;过点D作DF2⊥BD,

∵∠ABC=60°,F1D∥BE,

∴∠F2F1D=∠ABC=60°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,

∴∠F1DF2=∠ABC=60°,

∴△DF1F2是等边三角形,

∴DF1=DF2,

∵BD=CD,∠ABC=60°,点D是角平分线上一点,

∴∠DBC=∠DCB=×60°=30°,

∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF2=360°-150°-60°=150°,

∴∠CDF1=∠CDF2,

∵在△CDF1和△CDF2中,,

∴△CDF1≌△CDF2(SAS),

∴点F2也是所求的点,

∵∠ABC=60°,点D是角平分线上一点,DE∥AB,

∴∠DBC=∠BDE=∠ABD=×60°=30°,

又∵BD=6,

∴BE=×6÷cos30°=3÷=2,

∴BF1=BF2=BF1+F1F2=2+2=4,

故BF的长为2或4.故答案为:2或4.【点睛】本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.三、解答题(共66分)19、(1)见解析;(2)①1;②.【解析】试题分析:(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)①求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的长.试题解析:(1)证明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四边形ADCE是平行四边形.∵AD是BC边上的高,∴∠ADC=90°.∴□ADCE是矩形.(2)①解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四边形ADCE的面积是AD×DC=12×8=1.②当BC=时,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中.20、(1)y=-x+6;(2)12;(3)或.【解析】

(1)利用待定系数法,即可求得函数的解析式;(2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;(3)当△ONC的面积是△OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.【详解】(1)设直线AB的函数解析式是y=kx+b,根据题意得:,解得:,∴直线AB的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,∴;(3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,解得:,即直线OA的解析式是:,∵△ONC的面积是△OAC面积的,∴点N的横坐标是,当点N在OA上时,x=1,y=,即N的坐标为(1,),当点N在AC上时,x=1,y=5,即N的坐标为(1,5),综上所述,或.【点睛】本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.21、①菜地离小明家1.1千米,小明走到菜地用了15分钟;②小明给菜地浇水用了10分钟;③玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是0.08千米/分钟.【解析】

①根据函数图象可以直接写出菜地离小明家多远,小明走到菜地用了多少时间;②根据函数图象中的数据可以得到小明给菜地浇水用了多少时间;③根据函数图象中的数据可以得到玉米地离菜地、小明家多远,小明从玉米地走回家平均速度是多少.【详解】①由图象可得,菜地离小明家1.1千米,小明走到菜地用了15分钟;②25-15=10(分钟),即小明给菜地浇水用了10分钟;③2-1.1=0.9(千米)玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是2÷(80-55)=0.08千米/分钟.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.22、(1)见解析;(2)FG=;(3)d=14或.【解析】

(1)由菱形的性质可得AP∥EF,∠APF=∠EPF=∠APE,PB∥CD,∠CDB=∠PDB=∠CDP,由平行线的性质可得∠FPE=∠BDP,可得PF∥BD,即可得结论;(2)由矩形的性质和菱形的性质可得FG=PB=2EF=2AP,即可求FG的长;(3)分两种情况讨论,由勾股定理可求d的值;点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H;若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H.【详解】(1)∵四边形APEF是菱形∴AP∥EF,∠APF=∠EPF=∠APE,∵四边形PBCD是菱形∴PB∥CD,∠CDB=∠PDB=∠CDP∴∠APE=∠PDC∴∠FPE=∠BDP∴PF∥BD,且AP∥EF∴四边形四边形FGBP是平形四边形;(2)若四边形DFPG恰为矩形∴PD=FG,PE=DE,EF=EG,∴PD=2EF∵四边形APEF是菱形,四边形PBCD是菱形∴AP=EF,PB=PD∴PB=2EF=2AP,且AB=10∴FG=PB=.(3)如图,点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H,∵FE=2EG,∴PB=FG=3EG,EF=AP=2EG∵AB=10∴AP+PB=5EG=10∴EG=2,∴AP=4,PB=6=BC,∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=3,CH=BH=3∴AH=13∴AC==14若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H∵FE=2EG,∴PB=FG=EG,EF=AP=2EG∵AB=10,∴3EG=10∴EG=∴BP=BC=∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=,CH=BH=∴AH=∴AC=综上所述:d=14或.【点睛】本题考查菱形的性质、平行线的性质、平行四边形的判定及勾股定理,解题的关键是掌握菱形的性质、平行线的性质、平行四边形的判定及勾股定理的计算.23、(1)图象表示离家距离与时间之间的关系;(2)10时和11时,他分别离家15千米、20千米;(3)他最初到达离家最远的地方是13时,离家30千米;(4)11时到13时他行驶了10千米.【解析】

(1)根据函数图像的变量之间关系即可写出;(2)在函数图像直接可以看出;(3)在函数图像直接可以看出;(4)在函数图像得到数据进行计算即可.【详解】解:(1)图象表示离家距离与时间之间的关系;(2)10时和11时,他分别离家15千米、20千米;(3)他最初到达离家最远的地方是13时,离家30千米;(4)11时到13时他行驶了:千米.【点睛】此题主要考查函数图像的信息识别,解题的关键是熟知函数图像中各点的含义.24、(1);(2)能,;(3)详见解析.【解析】

(1)将A的坐标代入反比例解析式中求出k的值,确定出反比例解析式,将B的坐标代入反比例解析式中,求出mn的值,三角形ABD的面积由BD为底边,AE为高,利用三角形面积公式来求,由B的坐标得到BD=m,由AC-EC表示出AE,由已知的面积,利用面积公式列出关系式,将mn的值代入,求出m的值,进而确定出n的值,即可得到B的坐标;(2)假设四边形ABCD为平行四边形,利用平行四边形的性质得到BD与AC互相平分,得到E为AC的中点,E为BD的中点,由A的坐标求出E的坐标,进而确定出B的坐标,将B坐标代入反比例解析式检验,B在反比例图象上,故假设正确,四边形ABCD能为平行四边形;(3)由由AC=BD,得到A的纵坐标与B的横坐标相等,确定出B的横坐标,将B横坐标代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论