版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市光华中学2024年八年级数学第二学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x) B.ax2(x﹣2)C.ax(x+1)(x﹣1) D.ax(x﹣1)22.下列各点中,在函数y=﹣2x的图象上的是()A.(12,1) B.(﹣12,1) C.(﹣12,﹣1)D(03.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2C.3 D.44.在同一直角坐标系中,函数y=-kx+k与y=(k≠0)的图象大致是()A. B. C. D.5.如图,设甲图中阴影部分的面积为S1,乙图中阴影部分的面积为S2,k=(a>b>0),则有()A.k>2 B.1<k<2 C.<k<1 D.0<k<6.下列属于最简二次根式的是()A. B. C. D.7.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,首先应假设这个直角三角形中()A.两个锐角都大于45° B.两个锐角都小于45C.两个锐角都不大于45° D.两个锐角都等于45°8.如果是二次根式,那么x应满足的条件是()A.x≠2的实数 B.x<2的实数C.x>2的实数 D.x>0且x≠2的实数9.如图,在△ABC中,∠C=90°,点E是斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=5:2,则∠BAC=()A.60° B.70° C.80° D.90°10.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,BC=6,则下列正确的是()A.ED=BE B.ED=2BE C.ED=3BE D.ED=4BE11.下列根式中,不能与合并的是()A. B. C. D.12.如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为()A.12 B.3+3 C.6+3 D.6二、填空题(每题4分,共24分)13.计算:3xy2÷=_______.14.若点在反比例函数的图像上,则______.15.如图,在平面直角坐标系中,已知,,是轴上的一条动线段,且,当取最小值时,点坐标为______.16.如图,▱ABCD的周长为20,对角线AC与BD交于点O,△AOB的周长比△BOC的周长多2,则AB=________.17.如图,平面直角坐标系中,平行四边形的顶点,边落在正半轴上,为线段上一点,过点分别作,交平行四边形各边如图.若反比例函数的图象经过点,四边形的面积为,则的值为__.18.化简:.三、解答题(共78分)19.(8分)如图,在四边形ABCD中,AB∥CD,AC.BD相交于点O,且O是BD的中点(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=8,求四边形ABCD的周长.20.(8分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系;(2)将正方形EFGH绕点E顺时针方向旋转.①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.21.(8分)如图,直线与x轴交于点,直线与x轴、y轴分别交于B、C两点,并与直线相交于点D,若.求点D的坐标;求出四边形AOCD的面积;若E为x轴上一点,且为等腰三角形,写出点E的坐标直接写出答案.22.(10分)如图,在□ABCD中,∠B=60°.(1)作∠A的角平分线与边BC交于点E(用尺规作图,保留作图痕迹,不要求写作法);(2)求证:△ABE是等边三角形.23.(10分)“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2∶3∶5的比例纳入总分.最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见下表:序号123456笔试成绩/分669086646584专业技能测试成绩/分959293808892说课成绩/分857886889485(1)写出说课成绩的中位数、众数;(2)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这6名选手中序号是多少的选手将被录用?为什么?24.(10分)已知函数,(1)当m取何值时抛物线开口向上?(2)当m为何值时函数图像与x轴有两个交点?(3)当m为何值时函数图像与x轴只有一个交点?25.(12分)已知关于x的一元二次方程的两个实数根为x1、x2且x1+2x2=9,求m的值.26.如图,直角坐标系xOy中,一次函数y=kx+b的图象l1分别与x轴,y轴交于A(15,0),B两点,正比例函数y=x的图象l2与l1交于点C(m,3).(1)求m的值及l1所对应的一次函数表达式;(2)根据图象,请直接写出在第一象限内,当一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围.
参考答案一、选择题(每题4分,共48分)1、D【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.【详解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选D.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.2、B【解析】
把四个选项中的点分别代入解析式y=-2x,通过等式左右两边是否相等来判断点是否在函数图象上.【详解】A、把(12,1)代入函数y=-2x得:左边=1,右边=-1,左边≠右边,所以点(12,1)不在函数B、把(-12,1)代入函数y=-2x得:左边=1,右边=1,左边=右边,所以点(-12,1)在函数C、把(-12,-1)代入函数y=-2x得:左边=-1,右边=1,左边≠右边,所以点(-12,-1)不在函数D、把(0,-1)代入函数y=-2x得:左边=-1,右边=0,左边≠右边,所以点(0,-1)不在函数y=-2x的图象上,故本选项不符合题意;故选B.【点睛】本题考查了一次函数图象上点的坐标特征.用到的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.3、B【解析】
根据平行线的性质以及角平分线的性质证明∠ADE=∠AED,根据等角对等边,即可求得AE的长,在直角△ABE中,利用勾股定理求得BE的长,则CE的长即可求解.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE=AE2∴CE=BC﹣BE=AD﹣BE=10﹣8=1.故选B.考点:矩形的性质;角平分线的性质.4、C【解析】当k>0时,函数y=-kx+k的图象分布在第一、二、四象限,函数y=的图象位于第一、三象限。故本题正确答案为C.5、B【解析】
根据正方形和矩形的面积公式分别表示出两个阴影部分面积,即可求出所求.【详解】由题意得:甲图中阴影部分的面积为,乙图中阴影部分的面积为故选:B.【点睛】本题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、B【解析】
直接利用最简二次根式的定义分析得出答案.【详解】解:A、=3,故此选项错误;B、是最简二次根式,故此选项正确;C、,故此选项错误;D、,故此选项错误;故选:B.【点睛】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.7、A【解析】
用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【详解】用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设两个锐角都大于45°.故选:A.【点睛】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.8、C【解析】
根据二次根式的性质和分式的意义,被开方数大于等于2,分母不等于2,列不等式组求解.【详解】根据题意得:,解得:x>1.故选C.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥2)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于2.9、B【解析】点E是斜边AB的中点,ED⊥AB,∠B=∠DAB,∠DAB=2x,故2x+2x+5x=90°,故x=10°,∠BAC=70°.故选B.10、C【解析】
根据矩形的性质,AD=BC=6,则根据直角三角形的性质,得到∠ADE=30°,则得到∠BAE=30°,利用勾股定理求出DE的长度和BE的长度,即可得到答案.【详解】解:在矩形ABCD中,∠BAD=90°,AD=BC=6,∵AE⊥BD,AE=3,∴,∵Rt△ADE中,,∴∠ADE=30°,∵,∴,∴,∵,即,∴,∴;故选:C.【点睛】本题考查了矩形的性质,利用勾股定理解直角三角形,含30°直角三角形的性质,以及同角的余角相等,解题的关键是熟练掌握所学的知识,正确求出DE和BE的长度.11、C【解析】
解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选C.考点:同类二次根式.12、C【解析】
利用垂直平分线的性质可得∠DAB=∠B=15°,可得∠ADC=30°,易得AD=BD=2AC,CD=AC,然后根据BC=BD+CD可得出结果.【详解】解:∵AB的垂直平分线l交BC于点D,∴AD=DB,∴∠B=∠DAB=15°,∴∠ADC=30°,∵∠C=90°,AC=3,∴AD=6=BD,CD=3.∴BC=BD+CD=6+3.故选:C.【点睛】本题主要考查了垂直平分线的性质、含30°直角三角形的性质以及勾股定理,综合运用各性质定理是解答此题的关键.二、填空题(每题4分,共24分)13、【解析】分析:根据分式的运算法则即可求出答案.详解:原式=3xy2•=故答案为.点睛:本题考查了分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14、-1【解析】
将点代入反比例函数,即可求出m的值.【详解】解:将点代入反比例函数得:.故答案为:-1.【点睛】本题主要考查反比例函数图象上点的坐标特征,只要点在函数的图象上,就一定满足函数的解析式15、【解析】
如图把点A向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时AP+PQ+QB的值最小,求出直线BF的解析式,即可解决问题.【详解】解:如图把点4向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时4P+PQ+QB的值最小.设最小BF的解析式为y=kx+b,则有解得∴直线BF的解析式为y=x-2,令y=0,得到x=2.∴Q(2.0)故答案为(2,0).【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型16、1.【解析】
根据已知易得AB-BC=2,AB+BC=3,解方程组即可.【详解】解:∵△AOB的周长比△BOC的周长多2,∴AB-BC=2.又平行四边形ABCD周长为20,∴AB+BC=3.∴AB=1.故答案为1.【点睛】本题考查平行四边形的性质,解决平行四边形的周长问题一般转化为两邻边和处理.17、【解析】
过C作CM⊥x轴于点M,由平行四边形DCOE的面积可求得OE,过D作DN⊥x轴于点N,由C点坐标则可求得ON的长,从而可求得D点坐标,代入反比例函数解析式可求得k的值【详解】如图,过C作CM⊥x轴于点M,过D作DN⊥x轴于点N,则四边形CMND为矩形,∵四边形OABC为平行四边形,∴CD∥OE,且DE∥OC,∴四边形DCOE为平行四边形,∵C(2,5),∴OM=2,CM=5,由图可得,S△AOC=S△ABC=S▱ABCO,又∵S△FCP=S△DCP且S△AEP=S△AGP,∴S▱OEPF=S▱BGPD,∵四边形BCFG的面积为10,∴S▱CDEO=S▱BCFG=10,∴S四边形DCOE=OE•CM=10,即5OE=10,解得OE=2,∴CD=MN=2,∴ON=OM+MN=2+2=4,DN=CM=5,∴D(4,5),∵反比例函数y=图象过点D,∴k=4×5=20.故答案为:20.【点睛】本题考查反比例函数系数k的几何意义、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.18、2【解析】试题分析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此.三、解答题(共78分)19、(1)详见解析;(2)32【解析】
(1)利用全等三角形的性质证明AB=CD即可解决问题.(2)证明四边形ABCD是菱形,即可求四边形ABCD的周长.【详解】解:(1)证明:∵AB//CD,∴∠ABO=∠CDO,∵OB=OD,∠AOB=∠COD,∴△AOB≌△CODASA∴AB=CD.又∵AB//CD,∴四边形ABCD是平行四边形.(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD的周长=4×AB=32.【点睛】本题考查平行四边形的判定和性质,菱形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1)见解析;(2)①BH=AF,理由见解析,②正方形EFGH的边长为.【解析】
(1)根据正方形的对角线互相垂直平分可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;
(2)①连接EG,根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,根据全等三角形的性质即可得到结论;
②如备用图,根据平行四边形的性质得到AH∥BD,AH=BD,于是得到∠EAH=∠AEB=90°,根据勾股定理即可得到结论;【详解】(1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,∴△BEH≌△AEF(SAS),∴BH=AF;(2)①BH=AF,理由:连接EG,∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH与△AEF中,,∴△BEH≌△AEF,∴BH=AF;②如备用图,∵四边形ABDH是平行四边形,∴AH∥BD,AH=BD,∴∠EAH=∠AEB=90°,∵四方形ABCD的边长为,∴AE=BE=CE=DE=1,∴EH===,∴正方形EFGH的边长为.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,正确作出图形是解题的关键.21、(1)点坐标为;(2);(3)点E的坐标为、、、,、、.【解析】
先确定直线的解析式,进而求出点的坐标,再分两种情况:Ⅰ、当点在点右侧时,Ⅱ、当点在点左侧时,同Ⅰ的方法即可得出结论.(1)把点坐标代入可得到,则,然后根据两直线相交的问题,通过解方程组得到点坐标;(2)先确定点坐标为然后利用四边形的面积进行计算即可;(3)设出点的坐标,进而表示出,再利用等腰三角形的两腰相等建立方程,即可得出结论;【详解】解:把代入得,解得,,设,,,,或,点坐标为或,Ⅰ、当时,把代入得,解得,,解方程组得,点坐标为;当时,,点坐标为,四边形AOCD的面积;设,,,,,,是等腰三角形,当时,,或,或当时,,或舍,当时,,,,Ⅱ、当点时,把代入得,解得,,解方程组,得,点坐标为;当时,,点坐标为,四边形AOCD的面积;设,,,,当时,,或,或当时,,或舍,当时,,,,综上所述,点E的坐标为、、、,、、.【点睛】此题是一次函数综合题,主要考查了待定系数法,坐标轴上点的坐标特征,两直线的交点坐标的确定,等腰三角形的性质,分类讨论的思想解决问题是解本题的关键.22、(1)见解析;(1)见解析【解析】
(1)作∠A的角平分线与边BC交于点E即可;
(1)根据平行四边形的性质即可证明△ABE是等边三角形.【详解】解:(1)如图(1)如图,∵四边形是平行四边形,∴,∴∠1=∠1.∵AE平分∠BAD,∴∠1=∠3,∴∠1=∠3,∴AB=EB.∵∠B=60°,∴△ABE是等边三角形.【点睛】本题考查了作图-基本作图、等边三角形的判定、平行四边形的性质,解决本题的关键是掌握以上知识.23、(1)中位数是1.5分;众数是1分;(2)序号是3,6号的选手将被录用,见解析.【解析】
(1)利用中位数、众数的定义求解;
(2)先求出序号为5号的选手成绩和序号为6号的选手成绩,再与序号为1、2、3、4号选手的成绩进行比较,即可得出答案.【详解】将说课的成绩按从小到大的顺序排列:78、1、1、86、88、94,
∴中位数是(1+86)÷2=1.5,
1出现的次数最多,
∴众数是1.
(2)这六位选手中序号是3、6的选手将被录用.原因如下:
序号为5号的选手成绩为:(分);
序号为6号的选手成绩为:(分).
因为88.1>86.9>86.4>84.6>84.2>
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 标签和产品装饰行业市场现状供需分析及重点企业投资评估规划分析研究报告(2024-2030版)
- 按摩霜项目可行性研究报告(2024-2030版)
- 射频紧肤机行业市场现状供需分析及重点企业投资评估规划分析研究报告(2024-2030版)
- 2024年信贷居间服务合同范本
- 2024年大型仓储屋顶防水分包合同
- 2024年交通事故死者家属赔偿协议
- 2024年个人车辆租赁给企业合同
- 2024年城市公共服务合同
- 分期购买食品协议
- 2024年厨房设备租赁及运营合同
- (新版)糖尿病知识竞赛考试题库300题(含答案)
- 《创意改善生活》课件 2024-2025学年湘美版(2024)初中美术七年级上册
- CHT 1027-2012 数字正射影像图质量检验技术规程(正式版)
- 《扣件式钢管脚手架安全技术规范》JGJ130-2023
- 教学成果奖培育思考
- 河北省廊坊市药品零售药店企业药房名单目录
- 毕业设计(论文)叉车液压系统设计
- 研发项目立项管理流程总体思路.doc
- 室内装饰装修工程施工组织设计方案(完整版)
- 榆林市第十二中学第二个五年发展规划
- 日本城市生活垃圾处理现状及发展趋势
评论
0/150
提交评论