2024年河北省衡水市八校八年级下册数学期末检测模拟试题含解析_第1页
2024年河北省衡水市八校八年级下册数学期末检测模拟试题含解析_第2页
2024年河北省衡水市八校八年级下册数学期末检测模拟试题含解析_第3页
2024年河北省衡水市八校八年级下册数学期末检测模拟试题含解析_第4页
2024年河北省衡水市八校八年级下册数学期末检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年河北省衡水市八校八年级下册数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD的中点,则四边形EFGH的形状一定是()A.平行四边形 B.矩形 C.菱形 D.正方形2.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形AnBnCnDn的面积是A.①②③ B.②③④ C.①② D.②③3.下列各曲线中哪个不能表示y是x的函数的是()A. B. C. D.4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为,则成绩最稳定的是(

)A.甲 B.乙 C.丙 D.丁5.下列调查最适合用查阅资料的方法收集数据的是()A.班级推选班长 B.本校学生的到时间C.2014世界杯中,谁的进球最多 D.本班同学最喜爱的明星6.已知一次函数与的图象如图,则下列结论:①;②;③关于的方程的解为;④当时,,其中正确的个数是A.1 B.2 C.3 D.47.已知反比例函数y=kx-1的图象过点A(1,-2),则k的值为()A.1 B.2 C.-2 D.-18.如图,在中,平分,交于点,平分,交于点,,,则长为()A. B. C. D.9.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.2210.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2 B.4 C.8 D.4二、填空题(每小题3分,共24分)11.二次根式中,x的取值范围是________.12.在四边形中,同一条边上的两个角称为邻角.如果一个四边形一条边上的邻角相等,且这条边的对边上的邻角也相等,那么这个四边形叫做C形.根据研究平行四边形及特殊四边形的方法,在下面的横线上至少写出两条关于C形的性质:_____.13.已知一次函数y=x+4的图象经过点(m,6),则m=_____.14.一次函数(是常数,)的图象经过点,若,则的值是________.15.如果在平行四边形ABCD中,两个邻角的大小是5:4,那么其中较小的角等于_____.16.命题“对角线相等的四边形是矩形”的逆命题是_____________.17.函数y=的自变量x的取值范围为_____.18.等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.三、解答题(共66分)19.(10分)如图1所示,在中,为边上一点,将沿折叠至处,与交于点.若,,则的大小为_______.提出命题:如图2,在四边形中,,,求证:四边形是平行四边形.小明提供了如下解答过程:证明:连接.∵,,,∴.∵,∴,.∴,.∴四边形是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?如果有错,说明错在何处,并给出正确的证明过程.(2)用语言叙述上述命题:______________________________________________.运用探究:(3)下列条件中,能确定四边形是平行四边形的是()A.B.C.D.20.(6分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.21.(6分)如图1,在平画直角坐标系中,直线交轴于点,交轴于点,将直线沿轴向右平移2个单位长度交轴于,交轴于,交直线于.(1)直接写出直线的解析式为______,______.(2)在直线上存在点,使是的中线,求点的坐标;(3)如图2,在轴正半轴上存在点,使,求点的坐标.22.(8分)解不等式组:.并判断这个数是否为该不等式组的解.23.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE.若BC=5cm,AB=3cm,求EF的长.24.(8分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?25.(10分)如图,等腰直角三角形OAB的三个定点分别为、、,过A作y轴的垂线.点C在x轴上以每秒的速度从原点出发向右运动,点D在上以每秒的速度同时从点A出发向右运动,当四边形ABCD为平行四边形时C、D同时停止运动,设运动时间为.当C、D停止运动时,将△OAB沿y轴向右翻折得到△,与CD相交于点E,P为x轴上另一动点.(1)求直线AB的解析式,并求出t的值.(2)当PE+PD取得最小值时,求的值.(3)设P的运动速度为1,若P从B点出发向右运动,运动时间为,请用含的代数式表示△PAE的面积.26.(10分)如图,在平行四边形AECF中,B,D是直线EF上的两点,BE=DF,连接AB,BC,AD,DC.求证:四边形ABCD是平行四边形.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

本题没有图,需要先画出图形,如图所示

连接AC、BD交于O,根据三角形的中位线定理推出EF∥BD∥HG,EH∥AC∥FG,得出四边形EFGH是平行四边形,根据菱形性质推出AC⊥BD,推出EF⊥EH,即可得出答案.【详解】解:四边形EFGH的形状为矩形,

理由如下:

连接AC、BD交于O,

∵E、F、G、H分别是AB、AD、CD、BC的中点,

∴EF∥BD,FG∥AC,HG∥BD,EH∥AC,

∴EF∥HG,EH∥FG,

∴四边形EFGH是平行四边形,

∵四边形ABCD是菱形,

∴AC⊥BD,

∵EF∥BD,EH∥AC,

∴EF⊥EH,

∴∠FEH=90°,

∴平行四边形EFGH是矩形,

故答案为:B.【点睛】本题考查了矩形的判定,菱形的性质,平行四边形的判定,平行线性质等知识点的运用,主要考查学生能否正确运用性质进行推理,题目比较典型,难度适中.2、C【解析】

首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.【详解】①连接A1C1,B1D1.

∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,

∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;

∴A1D1∥B1C1,A1B1∥C1D1,

∴四边形A1B1C1D1是平行四边形;

∵AC丄BD,∴四边形A1B1C1D1是矩形,

∴B1D1=A1C1(矩形的两条对角线相等);

∴A2D2=C2D2=C2B2=B2A2(中位线定理),

∴四边形A2B2C2D2是菱形;

故①错误;

②由①知,四边形A2B2C2D2是菱形;

∴根据中位线定理知,四边形A4B4C4D4是菱形;

故②正确;

③根据中位线的性质易知,A5B5=∴四边形A5B5C5D5的周长是2×;故③正确;

④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,

∴S四边形ABCD=ab÷2;

由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,

四边形AnBnCnDn的面积是.故④正确;

综上所述,②③④正确.

故选C.【点睛】考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.3、D【解析】

在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.【详解】解:显然A、B、C三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D、对于x>0的部分值,y都有二个或三个值与之相对应,则y不是x的函数;故选:D.【点睛】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.4、D【解析】

因为=0.56,=0.60,=0.50,=0.45所以<<<,由此可得成绩最稳定的为丁.故选.点睛:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、C【解析】

了解收集数据的方法及渠道,得出最适合用查阅资料的方法收集数据的选项.【详解】A、B、D适合用调查的方法收集数据,不符合题意;C适合用查阅资料的方法收集数据,符合题意.故选C.【点睛】本题考查了调查收集数据的过程与方法.解题关键是掌握收集数据的几种方法:查资料、做实验和做调查.6、C【解析】

根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x≥2时,一次函数y1=x+a在直线y2=kx+b的上方,则可对④进行判断.【详解】一次函数经过第一、二、四象限,,,所以①正确;直线的图象与轴交于负半轴,,,所以②错误;一次函数与的图象的交点的横坐标为2,时,,所以③正确;当时,,所以④正确.故选.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程,一次函数的性质.7、C【解析】

直接把点(1,-2)代入反比例函数y=即可得出结论.【详解】∵反比例函数y=的图象过点A(1,−2),∴−2=,解得k=−2.故选C.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式8、A【解析】

先证明AB=AF,DC=DE,再根据EF=AF+DE﹣AD,求出AD,即可得出答案.【详解】∵四边形是平行四边形∴,,∥∵平分,平分∴,∴,∴∴∴故选A【点睛】本题考查了平行四边形的性质,考点涉及平行线性质以及等角对等边等知识点,熟练掌握平行四边形的性质是解答本题的关键.9、D【解析】

阴影部分的周长为AD+DE+EA+EB′+B′C+EC,

=AD+DE+EC+EA+EB′+B′C,

=AD+DC+AB′+B′C,

=3+8+8+3

=1.故选D.10、A【解析】

利用平行四边形的性质和勾股定理易求AC的长,进而可求出OB的长.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,OA=OC,∵AC⊥BC,AB=10,∴,∴,∴;故选:A.【点睛】本题考查了平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质和勾股定理是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

根据二次根式有意义的条件进行求解即可得.【详解】根据题意,得,解得,,故答案为:.【点睛】本题考查了二次根式有意义的条件,熟练掌握“式子叫二次根式、二次根式中的被开方数必须是非负数”是解题的关键.12、是轴对称图形;对角线相等;有一组对边相等;有一组对边平行.【解析】

根据C形的定义,利用研究平行四边形及特殊四边形的方法,从边、角、对角线以及对称性这几个方面分析即可.【详解】根据C形的定义,称C形中一条边上相等的邻角为C形的底角,这条边叫做C形的底边,夹在两底边间的边叫做C形的腰.则C形的性质如下:C形的两底边平行;C形的两腰相等;C形中同一底上的两个底角相等;C形的对角互补;C形的两条对角线相等;C形是轴对称图形.故答案为:C形的两底边平行;C形的两腰相等;C形中同一底上的两个底角相等;C形的对角互补;C形的两条对角线相等;C形是轴对称图形【点睛】本题考查了平行四边形性质的应用,学生的阅读理解能力与知识的迁移能力,掌握研究平行四边形及特殊四边形的方法,并且能够灵活运用是解题的关键.13、1【解析】试题分析:直接把点(m,6)代入一次函数y=x+4即可求解.解:∵一次函数y=x+4的图象经过点(m,6),∴把点(m,6)代入一次函数y=x+4得m+4=6解得:m=1.故答案为1.14、2【解析】

将点A(2,3)代入一次函数y=kx+b中即可求解.【详解】∵一次函数y=kx+b(k,b是常数,k≠0)的图象经过点A(2,3),

∴2k+b=3,

∵kx+b=3,

∴x=2

故答案是:2【点睛】考查的是一次函数图象上点的坐标特征,掌握图象上的点一定满足对应的函数解析式是解答此题的关键.15、80°【解析】

根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=4:5,求出∠B即可.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=4:5,∴∠B=×180°=80°,故答案为:80°.【点睛】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键.16、矩形的对角线相等【解析】

根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,原命题的条件是对角线相等,结论是矩形,互换即可得解.【详解】原命题的条件是:对角线相等的四边形,结论是:矩形;则逆命题为矩形的对角线相等.【点睛】此题主要考查对逆命题的理解,熟练掌握,即可解题.17、x≠1.【解析】

根据分式有意义的条件,即可快速作答。【详解】解:根据分式有意义的条件,得:x-1≠0,即x≠1;故答案为:x≠1。【点睛】本题考查了函数自变量的取值范围,但分式有意义的条件是解题的关键。18、12.【解析】

因为题中没有指明该外角是顶角的外角还是底角的外角,所以应该分两种情况进行讨论.【详解】解:当100°的角是顶角的外角时,顶角的度数为180°-100°=80°;

当100°的角是底角的外角时,底角的度数为180°-100°=80°,所以顶角的度数为180°-2×80°=20°;∴顶角的度数为80°或20°.故答案为80°或20°.【点睛】本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质等知识;分情况进行讨论是解答问题的关键.三、解答题(共66分)19、(1)详见解析;(2)两组对角分别相等的四边形是平行四边形;(3)B【解析】

由折叠的性质得∠DAE=D′AE=20°,∠DEA=∠D′EA,由三角形外角的性质得∠AEC=∠DAE+∠D=72°,进而得到∠DEA=108°,即可求得∠CED′.(1)利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论;(2)由(1)即可得出结论.(3)利用平行四边形同旁内角互补,对角相等即可完成解答.【详解】解:∵ABCD是平行四边形,∴∠B=∠D=52°,由折叠得:∠DAE=D′AE=20°,∠DEA=∠D′EA,∴∠AEC=∠DAE+∠D=20°+52°=72°,∠DEA=180°−72°=108°,∴∠CED′=∠D′EA−∠AEC=108°−72°=36°,故答案为36°.(1)小明的解法不正确,错在推出后,再由,不能直接推出.正确证明:∵∴∴∴.同理∴四边形是平行四边形(2)两组对角分别相等的四边形是平行四边形(3)根据题(2)可得,当时,所以,四边形ABCD两组对角分别相等,所以,四边形是平行四边形故选:B【点睛】本题考查了平行四边形的判定,解题的关键是了解平行四边形的几个判定定理.20、(1)①菱形,理由见解析;②AF=1;(2)秒.【解析】

(1)①先证明四边形ABCD为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;②根据勾股定理即可求AF的长;(2)分情况讨论可知,P点在BF上;Q点在ED上时;才能构成平行四边形,根据平行四边形的性质列出方程求解即可.【详解】(1)①∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵EF⊥AC,∴四边形AFCE为菱形.②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=1,∴AF=1.(2)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒1cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=1t,QA=12﹣4t,∴1t=12﹣4t,解得:t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.【点睛】本题考查了矩形的性质的运用,菱形的判定及性质的运用,勾股定理的运用,平行四边形的判定及性质的运用,解答时分析清楚动点在不同的位置所构成的图形的形状是解答本题的关键.21、(1),22;(2);(3)【解析】

(1)根据平移规律“上加下减、左加右减”进行计算可得到平移后的解析式,再分别求出A,B,C的坐标,即可计算出22;(2)作轴于,轴于,易得,则,再将x=4代入得到y=11,所以;(3)在轴正半轴上取一点,使,由外角性质和等腰三角形的性质得出,再用勾股定理求得OP的长,即可得出答案.【详解】解:(1)直线沿x轴向右平移2个单位长度,则y=-2(x-2)-7=-2x-3将和联立,得解得易得故答案为:,22;(2)作轴于,轴于,∵∴,,∵为的中线,∴,∵,∴,∴,在中,当时,,∴.(3)由(1)得,,∴,,在轴正半轴上取一点,使,∵,∴,∴,∵,∴,∴,在中,由勾股定理可得:,∴.【点睛】本题考查了一次函数和几何的综合,熟练掌握一次函数的图象和性质是解题关键.22、,不是不等式组的解.【解析】

先求出每个不等式的解集,再得出不等式组的解集,由x的取值范围即可得出结论.【详解】解.解不等式(1)得:,解不等式(2)得:,所以不等式是。∵>1∴不是不等式组的解。【点睛】本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x的取值范围是解答此题的关键.23、EF=cm.【解析】

根据折叠找到相等线段,再由勾股定理得出FC的长,设CE=x,在Rt△ECF中勾股定理即可求出EF的长.【详解】解:∵四边形ABCD为矩形,由折叠可知,∠AFE=∠D=90°,AD=AF,又∵BC=5cm,AB=3cm,∴在Rt△ABF中,BF==4,∴FC=1,设CE=x,则DE=EF=3-x,在Rt△ECF中,EF2=FC2+EC2,即(3-x)2=12+x2,解得:x=,∴EF=3-x=cm.【点睛】本题考查了折叠和勾股定理,中等难度,通过折叠找到相等线段是解题关键.24、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】

(1)设年平均增长率为x,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2015年到201

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论