2024年甘肃省武威第八中学八年级下册数学期末达标检测模拟试题含解析_第1页
2024年甘肃省武威第八中学八年级下册数学期末达标检测模拟试题含解析_第2页
2024年甘肃省武威第八中学八年级下册数学期末达标检测模拟试题含解析_第3页
2024年甘肃省武威第八中学八年级下册数学期末达标检测模拟试题含解析_第4页
2024年甘肃省武威第八中学八年级下册数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年甘肃省武威第八中学八年级下册数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.矩形ABCD中,AD=AB,AF平分∠BAD,DF⊥AF于点F,BF交CD于点H.若AB=6,则CH=()A. B. C. D.2.要使分式有意义,则x的取值应满足()A.x≠2 B.x=2 C.x=1 D.x≠13.下列各式的计算中,正确的是()A. B. C. D.4.从2004年5月起某次列车平均提速20千米/小时,用相同的时间,列车提速前行驶200千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?设提速前这次列车的平均速度为千米/小时,则下列列式中正确的是()A. B. C. D.5.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16 B.12 C.24 D.186.根据《九章算术》的记载中国人最早使用负数,下列四个数中的负数是()A. B. C. D.7.已知关于x的一次函数y=kx+2k-3的图象经过原点,则k的值为()A. B. C. D.8.如果直角三角形的边长为3,4,a,则a的值是()A.5 B.6 C. D.5或9.下列等式一定成立的是()A.-= B.∣2-=2- C. D.-=-410.若代数式有意义,则一次函数的图象可能是A. B. C. D.二、填空题(每小题3分,共24分)11.如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____.12.如图,在菱形中,点为上一点,,连接.若,则的度数为__________.13.已知,则___________.14.若是一元二次方程的一个根,则根的判别式与平方式的大小比较_____(填>,<或=).15.用反证法证明:“四边形中至少有一个角是直角或钝角”时,应假设________.16.一次函数y=-4x-5的图象不经过第_____________象限.17.确定一个的值为________,使一元二次方程无实数根.18.直角三角形中,两条直角边长分别为12和5,则斜边上的中线长是________.三、解答题(共66分)19.(10分)几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?(1)方法1:如图①,连接四边形的对角线,,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD和之间的关系:_______________.方法2:如图②,取四边形四边的中点,,,,连接,,,,(2)求证:四边形是平行四边形;(3)请直接写出S四边形ABCD与之间的关系:_____________.方法3:如图③,取四边形四边的中点,,,,连接,交于点.先将四边形绕点旋转得到四边形,易得点,,在同一直线上;再将四边形绕点旋转得到四边形,易得点,,在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形;(4)由旋转、平移可得_________,_________,所以,所以点,,在同一直线上,同理,点,,也在同一点线上,所以我们拼接成的图形是一个四边形.(5)求证:四边形是平行四边形.(注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)(6)应用1:如图④,在四边形中,对角线与交于点,,,,则S四边形ABCD=.(7)应用2:如图⑤,在四边形中,点,,,分别是,,,的中点,连接,交于点,,,,则S四边形ABCD=___________20.(6分)菱形中,,是对角线,点、分别是边、上两个点,且满足,连接与相交于点.(1)如图1,求的度数;(2)如图2,作于点,求证:;(3)在满足(2)的条件下,且点在菱形内部,若,,求菱形的面积.21.(6分)已知关于x的方程x2-(m+1)x+2(m-1)=0,(1)求证:无论m取何值时,方程总有实数根;(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.22.(8分)如图,四边形中,,平分,交于.(1)求证:四边形是菱形;(2)若点是的中点,试判断的形状,并说明理由.23.(8分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.24.(8分)如图,在平行四边形ABCD中,点M、N分别在线段DA、BA的延长线上,且BD=BN=DM,连接BM、DN并延长交于点P.求证:∠P=90°﹣∠C;25.(10分)如图,方格纸中每个小方格都是长为1个单位的正方形.若学校位置的坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆B位置的坐标;(2)若体育馆位置的坐标为C(-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.26.(10分)某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.(1)求一件A种文具的价格;(2)根据需要,该校准备在该商店购买A、B两种文具共150件.①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

过作,交于,交于,则,证是等腰直角三角形,得出,证,为的中位线,进而得出答案.【详解】解:如图,过作,交于,交于,则,四边形是矩形,,,,,,平分,,,,,是等腰直角三角形,,点是的中点,,为的中位线,,,;故选:.【点睛】本题考查了矩形的性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,三角形中位线定理等知识;熟练掌握矩形的性质和等腰直角三角形的判定与性质是解本题的关键.2、A【解析】

根据分式的性质,要使分式有意义,则分式的分母不等于0.【详解】根据题意可得要使分式有意义,则所以可得故选A.【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.3、B【解析】

根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A、应为x4÷x4=1,故本选项错误;B、a2•a2=a4,正确;C、应为(a3)2=a6,故本选项错误;D、a2与a3不是同类项,不能合并,故本选项错误.故选:B.【点睛】本题主要考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,很容易混淆,一定要记准法则才能做题.4、B【解析】

设提速前列车的平均速度为x千米/小时,则提速之后的速度为(x+20)千米/小时,根据题意可得,相同的时间提速之后比提速之前多走50千米,据此列方程.【详解】设提速前列车的平均速度为x千米/小时,由题意得:.故选B.【点睛】考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.5、A【解析】

由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.【详解】解:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.故选A.【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.6、C【解析】

将各数化简即可求出答案.【详解】解:A.原式,故A不是负数;B.原式,故B不是负数;C.是负数;

D.原式,故D不是负数;

故选:C.【点睛】本题考查正数与负数,解题的关键是将原数化简,本题属于基础题型.7、B【解析】

将原点代入一次函数的解析式中,建立一个关于k的方程,解方程即可得出答案.【详解】∵关于x的一次函数y=kx+2k-3的图象经过原点,∴,解得,故选:B.【点睛】本题主要考查一次函数,掌握一次函数图像上的点符合一次函数的解析式是解题的关键.8、D【解析】

分两种情况分析:a是斜边或直角边,根据勾股定理可得.【详解】解:当a是斜边时,a=;当a是直角边时,a=所以,a的值是5或故选:D.【点睛】本题考核知识点:勾股定理,解题关键点:分两种情况分析.9、D【解析】分析:根据二次根式的运算一一判断即可.详解:A.故错误.B.故错误.C.,故错误.D.正确.故选D.点睛:考查二次根式的运算,根据运算法则进行运算即可.10、A【解析】

根据二次根式有意义的条件和分式有意义的条件得到k-1>0,解k>1,则1-k<0,然后根据一次函数与系数的关系可判断一次函数的位置,从而可对各选项进行判断.【详解】解:根据题意得k-1>0,解k>1,

因为k-1>0,1+k>0,

所以一次函数图象在一、二、三象限.

故选:A.【点睛】本题考查一次函数与系数的关系:对于y=kx+b,当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题(每小题3分,共24分)11、10cm【解析】

将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,从而求出解题中的AC,连接AB,根据两点之间线段最短可得小蚂蚁爬行的最短路程为此时AB的长,然后根据勾股定理即可求出结论.【详解】解:将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,如下图所示:AC=1.5×4=6cm,连接AB,根据两点之间线段最短,∴小蚂蚁爬行的最短路程为此时AB的长∵圆柱体的高为8cm,∴BC=8cm在Rt△ABC中,AB=cm故答案为:10cm.【点睛】此题考查的是利用勾股定理求最短路径问题,将圆柱的侧面展开,根据两点之间线段最短即可找出最短路径,然后利用勾股定理求值是解决此题的关键.12、18【解析】

由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD是菱形,∴AD=CD,∠A=∠BCD,CD∥AB,∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°,∵CD∥AB,∴∠CDE=∠DEA=72°,且DE=DC=DA,∴∠DCE=54°,∵∠DCB=∠DAE=72°,∴∠BCE=∠DCB-∠DCE=18°.故答案为:18.【点睛】本题考查了菱形的性质,等腰三角形的性质,熟练运用菱形的性质是本题的关键.13、【解析】

将二次根式化简代值即可.【详解】解:所以原式.故答案为:【点睛】本题考查了二次根式的运算,将二次根式转化为和已知条件相关的式子是解题的关键.14、=【解析】

首先把(2ax0+b)2展开,然后把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,再代入前面的展开式中即可得到△与M的关系.【详解】把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,∵(2ax0+b)2=4a2x02+4abx0+b2,∴(2ax0+b)2=4a(ax02+bx0)+b2=-4ac+b2=△,∴M=△.故答案为=.【点睛】本题是一元二次方程的根与根的判别式的结合试题,既利用了方程的根的定义,也利用了完全平方公式,有一定的难度.15、四边形中所有内角都是锐角.【解析】

反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中所有内角都是锐角.故答案为:四边形中所有内角都是锐角.【点睛】本题考查了反证法,解答此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.16、一【解析】

根据一次函数的性质可以判断该函数经过哪几个象限,不经过哪个象限,本题得以解决.【详解】∵一次函数y=-4x-5,k=-4<0,b=-5<0,∴该函数经过第二、三、四象限,不经过第一象限,故答案为:一.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.17、【解析】

根据方程无实数根求出b的取值范围,再确定b的值即可.【详解】∵一元二次方程x2+2bx+1=0无实数根,∴4b2-4<0∴-1<b<1,因此,b可以取等满足条件的值.【点睛】此题考查了一元二次方程根的判别式的应用.此题难度不大,解题的关键是掌握当△<0时,一元二次方程没有实数根.18、6.5【解析】

利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.【详解】解:如图,在△ABC中,∠C=90°,AC=11,BC=5,根据勾股定理知,∵CD为斜边AB上的中线,故答案为:6.5【点睛】本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a1+b1=c1.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.三、解答题(共66分)19、(1)S四边形ABCD;(2)见详解;(1)S四边形ABCD;(4)AEO,OEB;(5)见详解;(6);(7)【解析】

(1)先证四边形AEBO,四边形BFCO,四边形CGDO,四边形DHAO都是平行四边形,可得S△ABO=S四边形AEBO,S△BCO=S四边形BFCO,S△CDO=S四边形CGDO,SADO=S四边形DHAO,即可得出结论;(2)证明,和,,即可得出结论;(1)由,可得S四边形MNHE=S△ABD,S四边形MNGF=S△CBD,即可得出结论;(4)有旋转的定义即可得出结论;(5)先证,得到,再证,即可得出结论;(6)应用方法1,过点H作HM⊥EF与点M,再计算即可得出答案;(7)应用方法1,过点O作OM⊥IK与点M,再计算即可得出答案.【详解】解:方法一:如图,∵EF∥AC∥HD,EH∥DB∥FG,∴四边形AEBO,四边形BFCO,四边形CGDO,四边形DHAO都是平行四边形,∴S△ABO=S四边形AEBO,S△BCO=S四边形BFCO,S△CDO=S四边形CGDO,SADO=S四边形DHAO,∴.故答案为.方法二:如图,连接.(1),分别为,中点..,分别为,中点.,四边形为平行四边形(2),分别为,中点..∴S四边形MNHE=S△ABD,S四边形MNGF=S△CBD,∴故答案为.方法1.(1)有旋转可知;.故答案为∠AEO;∠OEB.(2)证明:有旋转知..旋转.四边形为平行四边形应用1:如图,应用方法1,过点H作HM⊥EF与点M,∵,∴∠AEM=60°,∠EHM=10°,∵,,∴EM=1,EH=6,EF=8,∴HM==,∴=EF·HM=24∴=,故答案为.应用2:如图,应用方法1,过点O作OM⊥IK与点M,,∵,∴∠MIO=60°,∠IOM=10°,∵,,∴IM=1,OI=6,IK=8,∴OM==,∴=KI·OM=24∴S四边形ABCD=,故答案为.【点睛】此题主要考查了平行四边形的判定与性质,旋转,三角形的中位线,三角形和平行四边形的面积,选择合适的方法来求面积是解决问题的关键.20、(1);(2)证明见解析;(3).【解析】

(1)只要证明△DAE≌△BDF,推出∠ADE=∠DBF,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;(2)如图3中,延长GE到M,使得GM=GB,连接BD、CG.由△MBD≌△GBC,推出DM=GC,∠M=∠CGB=60°,由CH⊥BG,推出∠GCH=30°,推出CG=2GH,由CG=DM=DG+GM=DG+GB,即可证明2GH=DG+GB;(3)解直角三角形求出BC即可解决问题.【详解】(1)如图,四边形是菱形,,,是等边三角形,,,在和中,,,,,.(2)如图,延长到,使得,连接.,,是等边三角形,,,在和中,,,,,,,,,.(3)如图中,由(2)可知,在中,,,,,,,在中,,,都是等边三角形,.【点睛】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、证明见解析1和2【解析】

(1)根据方程的系数结合根的判别式即可得出△=(m-3)2≥0,由此即可证出结论;(2)等腰三角形的腰长为1,将x=1代入原方程求出m值,将m的值代入原方程中解方程即可得出方程的解,再根据三角形的三边关系确定△ABC的三条边,结合三角形的周长即可得出结论.【详解】(1)证明:∵△=[﹣(m+1)]2﹣1×2(m﹣1)=m2﹣6m+9=(m﹣3)2≥0,∴无论m取何值,这个方程总有实数根;(2)等腰三角形的腰长为1,将x=1代入原方程,得:16﹣1(m+1)+2(m﹣1)=0,解得:m=5,∴原方程为x2﹣6x+8=0,解得:x1=2,x2=1.组成三角形的三边长度为2、1、1;所以三角形另外两边长度为1和2.【点睛】本题考查了根的判别式,三角形三边关系,等腰三角形的性质以及解一元二次方程,⑴牢记当△≥0时,方程有实数根,⑵代入x=1求出m的值是解决本题的关键.22、(1)详见解析;(2)是直角三角形,理由详见解析.【解析】

(1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.【详解】(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴平行四边形AECD是菱形;(2)直角三角形,理由如下:∵四边形AECD是菱形,∴AE=EC,∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.【点睛】本题考查了平行四边形的判定,菱形的判定与性质,直角三角形的判定,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.23、证明见解析.【解析】试题分析:首先证明△AEB≌△CFD可得AB=CD,再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.试题解析:∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中∠DCF=∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.24、证明见解析.【解析】分析:首先过点B作BF⊥PD于点F,过点D作DG⊥BP于点G,BF与DG交于点H,由BD=BN=DM,可得BF与DG是∠DBN、∠MDB的平分线,又由四边形内角和为360°,可得∠P+∠FHG=180°,继而可得∠DHB=∠FHG=180°-∠P=90°+∠C,则可证得结论.详解:证明:过点B作BF⊥PD于点F,过点D作DG⊥BP于点G,BF与DG交于点H,∴∠FHG+∠P=180°,∴∠DHB+∠P=180°,∴∠DHB=180°﹣∠P,∵BD=BN=DM,∴BF与DG是∠DBN、∠MDB的平分线,∴由四边形内角和为360°,可得∠P+∠FHG=180°,∵∠DHB=180°﹣(∠GDB+∠FBD)=180°﹣(180°﹣∠DAB)=90°﹣∠DAB,∵四边形ABCD是平行四边形,∴∠D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论