2024年山东省济宁市梁山县八年级数学第二学期期末监测模拟试题含解析_第1页
2024年山东省济宁市梁山县八年级数学第二学期期末监测模拟试题含解析_第2页
2024年山东省济宁市梁山县八年级数学第二学期期末监测模拟试题含解析_第3页
2024年山东省济宁市梁山县八年级数学第二学期期末监测模拟试题含解析_第4页
2024年山东省济宁市梁山县八年级数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年山东省济宁市梁山县八年级数学第二学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.6 B.8 C.12 D.102.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A. B. C. D.3.如图,点是矩形的对角线的中点,点是的中点.若,则四边形的周长是()A.7 B.8 C.9 D.104.如果点在正比例函数的图像上,那么下列等式一定成立的是()A. B. C. D.5.一个直角三角形的两边长分别为,则第三边长可能是()A. B. C.或2 D.6.若,则的值为()A.14 B.16 C.18 D.207.下列图案中,是中心对称图形的是()A. B.

C. D.8.分式,-,的最简公分母是(

)A.5abx B.5abx3 C.15abx D.15abx29.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前跑过的路程大于小林前跑过的路程D.小林在跑最后的过程中,与小苏相遇2次10.如图,一次图数y=﹣x+3与一次函数y=2x+m图象交于点(2,n),则关于x的不等式组的解集为()A.x>﹣2 B.x<3 C.﹣2<x<3 D.0<x<311.如图,一次函数()的图象经过,两点,则关于的不等式的解集是()A. B. C. D.12.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10 B. C. D.2二、填空题(每题4分,共24分)13.计算+×的结果是_____.14.如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是________cm.15.两个相似三角形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个三角形的周长分别是。16.函数中,自变量的取值范围是.17.若正n边形的内角和等于它的外角和,则边数n为_____.18.若二次根式有意义,则x的取值范围为__________.三、解答题(共78分)19.(8分)如图,在菱形中,是的中点,且,;求:(1)的大小;(2)菱形的面积.20.(8分)已知y﹣2与x+1成正比例函数关系,且x=﹣2时,y=1.(1)写出y与x之间的函数关系式;(2)求当x=﹣3时,y的值;21.(8分)阅读下列材料,解决问题:学习了勾股定理后我们知道:直角三角形两条直角边的平方和等于斜边的平方.根据勾股定理我们定义:如图①,点M、N是线段AB上两点,如果线段AM、MN、NB能构成直角三角形,则称点M、N是线段AB的勾股点解决问题(1)在图①中,如果AM=2,MN=3,则NB=.(2)如图②,已知点C是线段AB上一定点(AC<BC),在线段AB上求作一点D,使得C、D是线段AB的勾股点.李玉同学是这样做的:过点C作直线GH⊥AB,在GH上截取CE=AC,连接BE,作BE的垂直平分线交AB于点D,则C、D是线段AB的勾股点你认为李玉同学的做法对吗?请说明理由(3)如图③,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H求证:G、H是线段DE的勾股点.22.(10分)如图,在平面直角坐标系中,直线交轴于点,交轴于点.点在轴的负半轴上,且的面积为8,直线和直线相交于点.(1)求直线的解析式;(2)在线段上找一点,使得,线段与相交于点.①求点的坐标;②点在轴上,且,直接写出的长为.23.(10分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.24.(10分)已知:如图,一次函数的图象与反比例函数()的图象交于点.轴于点,轴于点.一次函数的图象分别交轴、轴于点、点,且,.(1)求点的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当取何值时,一次函数的值小于反比例函数的值?25.(12分)如图所示,在ΔABC中,点D在BC上,CF⊥AD于F,且CF平分∠ACB,AE=EB.求证:EF=126.已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.

参考答案一、选择题(每题4分,共48分)1、D【解析】

要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【详解】解:如图,连接BM,∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故选:D.【点睛】此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.2、C【解析】

易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【详解】∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.3、C【解析】

根据三角形的中位线及直角三角形斜边上的中线等于斜边的一半即可求解.【详解】∵AB=3,BC=4,∴AC=,∵O点为AC中点,∴BO==2.5,又M是AD中点,∴MO是△ACD的中位线,故OM==1.5,∴四边形ABOM的周长为AB+BO+MO+AM=3+2.5+2+1.5=9,故选C.【点睛】此题主要考查矩形的性质,解题的关键是熟知直角三角形的性质及中位线定理的性质.4、D【解析】

由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.【详解】∵点A(a,b)是正比例函数图象上的一点,∴,∴.故选D.【点睛】此题考查正比例函数,解题关键在于将点A的坐标代入函数表达式.5、C【解析】

本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】解:设第三边为x,

①当8是直角边,则62+82=x2解得x=10,

②当8是斜边,则62+x2=82,解得x=2.

∴第三边长为10或2.

故选:C.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.6、C【解析】

先将移项得:,然后两边平方,再利用完全平方公式展开,整理即可得解.【详解】∵,∴,∴,∴,故选C.【点睛】本题考查了完全平方公式,牢牢掌握平方公式是解决本题的关键.7、D【解析】

根据中心对称图形的定义逐一进行分析判断即可.【详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.8、D【解析】

求出ax,3b,5x2的最小公因式即可。【详解】解:由ax,3b,5x2得最小公因式为15abx2,故答案为D。【点睛】本题考查了最简公分母,即分母的最小公因式;其关键在于最小公因式,不仅最小,而且能被每一个分母整除。9、D【解析】

A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.10、C【解析】

先求出直线y=﹣x+1与x轴的交点坐标,然后根据函数特征,写出在x轴上,直线y=2x+m在直线y=﹣x+1上方所对应的自变量的范围.【详解】解:直线y=﹣x+1与x轴的交点坐标为(1,0),所以不等式组的解集为﹣2<x<1.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.11、C【解析】

根据图像,找到y>0时,x的取值范围即可.【详解】解:由图像可知:该一次函数y随x的增大而增大,当x=-3时,y=0∴当x>-3时,y>0,即∴关于的不等式的解集是故选C.【点睛】此题考查的是一次函数与一元一次不等式的关系,掌握一次函数的图象及性质与一元一次不等式的解集的关系是解决此题的关键.12、D【解析】

∵3、a、4、6、7,它们的平均数是5,∴(3+a+4+6+7)=5,解得,a=5S2=[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选D.二、填空题(每题4分,共24分)13、.【解析】原式===,故答案为.【点睛】本题考查了二次根式的混合运算,准确地对每一个二次根式进行化简,熟练运算法则是解题的关键.14、20【解析】

利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.【详解】:∵∠HEM=∠AEH,∠BEF=∠FEM,

∴∠HEF=∠HEM+∠FEM=×180°=90°,

同理可得:∠EHG=∠HGF=∠EFG=90°,

∴四边形EFGH为矩形,

∴GH∥EF,GH=EF,

∴∠GHN=∠EFM,

在△GHN和△EFM中∴△GHN≌△EFM(AAS),

∴HN=MF=HD,

∴AD=AH+HD=HM+MF=HF,∴AD=20厘米.

故答案为:20【点睛】此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键.15、40cm,100cm【解析】设最长边为10cm的多边形周长为x,则最长边为24cm的多边形的周长为(x+60)cm.∵周长之比等于相似比.∴10/25=x/(x+60).解得x=40cm,x+60=100cm.16、x≠1【解析】,x≠117、1【解析】

设这个多边形的边数为n,则依题意可列出方程(n﹣2)×180°=360°,从得出答案.【详解】解:设这个多边形的边数为n,则依题意可得:(n﹣2)×180°=360°,解得,n=1.故答案为:1.【点睛】本题考查的知识点是正多边形的内角和与外角和,熟记正多边形内角和的计算公式是解此题的关键.18、x≤1【解析】

解:∵二次根式有意义,∴1-x≥0,∴x≤1.故答案为:x≤1.三、解答题(共78分)19、(1);(2).【解析】

(1)由为中点,,可证,从而是等边三角形,,进而可求的大小;(2)由菱形的性质可求,从而,,根据勾股定理求出AO的长,然后根据菱形面积公式求解即可.【详解】(1)连接,∵为中点,,∴垂直平分,∴,∵四边形是菱形,∴,∴,∴是等边三角形,∴.∴.(2)在菱形中,,∴,,∴,∴,根据勾股定理可得:,即,∴.【点睛】此题考查了菱形的性质,等边三角形的判定与性质,含30度角的直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用是解题关键.20、(1)y=-4x-2;(2)2

【解析】

(1)利用正比例函数的定义设y-2=k(x+1),然后把已知的对应值代入求出k得到y与x之间的函数关系式;

(2)利用(1)中的函数解析式,计算自变量为-3时对应的函数值即可.【详解】解:(1)设y-2=k(x+1),

∵x=-2

y=1,

∴1-2=k•(-2+1),解得k=-4

∴y=-4x-2;(2)由(1)知

y=-4x-2,

∴当x=-3时,y==2.【点睛】本题考查了用待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.21、(1)或;(2)对,理由见解析;(3)见解析【解析】

(1)分两种情形分别求解即可解决问题.(2)想办法证明DB2=AC2+CD2即可.(3)利用三角形的中位线定理以及勾股定理证明EH2=GH2+DG2即可.【详解】解:(1)当BN是斜边时,BN==.当MN是斜边时,BN==,故答案为或.(2)如图②中,连接DE.∵点D在线段BE的垂直平分线上,∴DE=DB,∵GH⊥BC,∴∠ECD=90°,∴DE2=EC2+CD2,∵AC=CE,DE=DB,∴DB2=AC2+CD2,∴C、D是线段AB的勾股点.(3)如图3中,∵CD=DA,CE=EB,∴DE∥AB,∴CG=GM,CH=HN,∴DG=AM,GH=MN,EH=BN,∵BN2=MN2+AM2,∴BN2=MN2+AM2,∴(BN)2=(MN)2+(AM)2,∴EH2=GH2+DG2,∴G、H是线段DE的勾股点.【点睛】本题考查作图−复杂作图,线段的垂直平分线的性质,勾股定理,三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)直线的解析式为;(2)①,,②满足条件的的值为8或.【解析】

(1)求出B,C两点坐标,利用待定系数法即可解决问题.(2)①连接AD,利用全等三角形的性质,求出直线DF的解析式,构建方程组确定交点E坐标即可.②如图1中,将线段FD绕点F顺时针旋转90°得到FG,作DE⊥y轴于E,GH⊥y轴于F.根据全等三角形,分两种情形分别求解即可.【详解】(1)直线交轴于点,交轴于点,,,点在轴的负半轴上,且的面积为8,,,则,设直线的解析式为即,解得,故直线的解析式为.(2)①连接.点是直线和直线的交点,故联立,解得,即.,故,且,,,,,,即,可求直线的解析式为,点是直线和直线的交点,故联立,解得,即,.②如图1中,将线段绕点顺时针旋转得到,作轴于,轴于.则,,,,,直线的解析式为,设直线交轴于,则,,.作,则,可得直线的解析式为,,,综上所述,满足条件的的值为8或.【点睛】本题考查用待定系数法求一次函数的解析式,两条直线的交点,利用坐标求线段长度证全等,灵活运用一次函数以及全等是解题的关键.23、(1)证明见解析;(2)证明见解析.【解析】

(1)利用平行四边形的性质结合全等三角形的判定方法(AAS),得出即可;(2)利用全等三角形的性质得出AE=CF,进而求出四边形AFCE是平行四边形.,再利用菱形的判定方法得出答案.【详解】(1)如图1.∵四边形ABCD是平行四边形,∴AB∥DC,AB="DC."∴∠1=∠2.∵AE∥CF,∴∠3=∠4.在△AEB和△CFD中,,∴△AEB≌△CFD;(2)如图2.∵△AEB≌△CFD,∴AE=CF.∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论