




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省宜宾县2024年数学八年级下册期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在四边形中,,再补充一个条件使得四边形为菱形,这个条件可以是()A. B.C. D.与互相平分2.一次函数的图像经过点,且的值随值的增大而增大,则点的坐标可以为()A. B. C. D.3.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是A.2,3,4 B.,, C.,,1 D.6,9,134.在菱形ABCD中,对角线AC,BD相交于点O,AD=5,AC=8,则OD的长为()A.4 B.5 C.6 D.35.如果,那么yx的算术平方根是()A.2 B.1 C.-1 D.±16.在平行四边形中,于点,于点,若,,平行四边形的周长为,则()A. B. C. D.7.下列四个数中,大于而又小于的无理数是A. B. C. D.8.关于的一次函数的图象可能正确的是()A. B. C. D.9.如图所示,在矩形中,,,矩形内部有一动点满足,则点到,两点的距离之和的最小值为().A. B. C. D.10.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:==11,==15:s甲2=s丁2=1.6,s乙2=s丙2=6.1.则麦苗又高又整齐的是()A.甲 B.乙 C.丙 D.丁11.下列命题是真命题的是()A.对角线互相垂直的四边形是菱形 B.对角线相等的菱形是正方形C.对角线互相垂直且相等的四边形是正方形 D.对角线相等的四边形是矩形12.如图1,四边形中,,.动点从点出发沿折线方向以单位/秒的速度匀速运动,在整个运动过程中,的面积与运动时间(秒)的函数图像如图2所示,则AD等于()A.10 B. C.8 D.二、填空题(每题4分,共24分)13.如图,函数和的图象相交于点A(,3),则不等式的解集为___________.14.直角三角形中,两条直角边长分别为12和5,则斜边上的中线长是________.15.如图,是内的一点,,点分别在的两边上,周长的最小值是____.16.函数是y关于x的正比例函数,则______.17.一个多边形的内角和等于1800°,它是______边形.18.某地出租车行驶里程()与所需费用(元)的关系如图.若某乘客一次乘坐出租车里程12,则该乘客需支付车费__________元.三、解答题(共78分)19.(8分)如图,是的中线,,交于点,是的中点,连接.(1)求证:四边形是平行四边形;(2)若四边形的面积为,请直接写出图中所有面积是的三角形.20.(8分)已知,在中,,于点,分别交、于点、点,连接,若.(1)若,求的面积.(2)求证:.21.(8分)某超市出售甲、乙、丙三种糖果,其售价分别为5元/千克,12元/千克,20元/千克,为满足客多样化需求,超市打算把糖果混合成杂拌糖出售,如果按照如图所示的扇形统计图中甲、乙、丙三种糖果的比例混合,这种新混合的杂排糖的售价应该为多少元/千克?22.(10分)甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.(1)求乙车离开A城的距离y关于t的函数解析式;(2)求乙车的速度.23.(10分)如图所示,在□ABCD中,点E,F在它的内部,且AE=CF,BE=DF,试指出AC与EF的关系,并说明理由.24.(10分)计算:(1)(-)2-+(2)-×.25.(12分)如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.(1)求证:△ABE≌△ACE;(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.26.如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.(1)求点A、B、C的坐标;(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.
参考答案一、选择题(每题4分,共48分)1、D【解析】
由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.【详解】解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形,故选:D.【点睛】此题考查了平行四边形的判定以及菱形的判定.此题比较简单,注意掌握对角线互相垂直的平行四边形是菱形定理的应用.2、A【解析】
y的值随x值的增大而増大,可知函数y=kx-1图象经过第一、三、四象限,结合选项判断点(1,-3)符合题意.【详解】解:y的值随x值的增大而増大,∴k>0,∴函数图象经过第一、三、四象限,点(1,-3)、点(5,3)和点(5,-1)符合条件,当经过(5,-1)时,k=0,当经过(1,-3)时,k=-2,当经过(5,3)时,k=,故选:A.【点睛】本题考查一次函数图象及性质;熟练掌握一次函数图象性质,点与函数图象的关系是解题的关键.3、C【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、,不能构成直角三角形,故本选项错误;B、,不能构成直角三角形,故本选项错误;C、,能构成直角三角形,故本选项正确;D、,不能构成直角三角形,故本选项错误.故选:C.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形是解答此题的关键.4、D【解析】
由菱形的对角线的性质可知OA=4,根据勾股定理即可求出OD的长.【详解】解:如图,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=4∵AD=5,∴OD=AD故选D.【点睛】本题考查了菱形的性质和勾股定理.5、B【解析】
根据二次根式的性质,先求出x和y的值,然后代入计算即可.【详解】解:∵,∴,,∴且,∴,∴,∴,∵,∴的算术平方根为1;故选:B.【点睛】本题考查了二次根式的性质,二次根式的化简,以及算术平方根的定义,解题的关键是熟练掌握二次根式的性质,正确求出x、y的值.6、D【解析】
已知平行四边形的高AE、AF,设BC=xcm,则CD=(20-x)cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.【详解】解:设BC=xcm,则CD=(20−x)cm,根据“等面积法”得,4x=6(20−x),解得x=12,∴平行四边形ABCD的面积=4x=4×12=48;故选D.【点睛】本题主要考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.7、B【解析】
根据无理数的大概值和1,2比较大小,首先计算出每个选项的大概值.【详解】A选项不是无理数;B是无理数且C是无理数但D是无理数但故选B.【点睛】本题主要考查无理数的比较大小,关键在于估算结果.8、C【解析】
根据图象与y轴的交点直接解答即可.【详解】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),
∵k2+1>0,
∴图象与y轴的交点在y轴的正半轴上.
故选C.【点睛】本题考查一次函数的图象,熟知一次函数的图象与y轴交点的特点是解答此题的关键.9、D【解析】
首先由,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【详解】解:设△ABP中AB边上的高是h.∵,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值为.故选D.【点睛】本题考查了轴对称−最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.10、D【解析】
方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可.【详解】∵=>=,∴乙、丁的麦苗比甲、丙要高,∵s甲2=s丁2<s乙2=s丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选D.【点睛】本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.11、B【解析】
根据菱形的判定方法、正方形的判定方法以及矩形的判定方法对各选项加以判断即可.【详解】A:对角线互相垂直的平行四边形是菱形,故选项错误,为假命题;B:对角线相等的菱形是正方形,故选项正确,为真命题;C:对角线互相垂直且相等的平行四边形是正方形,故选项错误,为假命题;D:对角线相等的平行四边形是矩形,故选项错误,为假命题;故选:B.【点睛】本题主要考查了菱形、正方形以及矩形的判定方法,熟练掌握相关概念是解题关键.12、B【解析】
当t=5时,点P到达A处,即AB=5;当s=40时,点P到达点D处,即可求解。【详解】当t=5时,点P到达A处,即AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=CD,当s=40时,点P到达点D处,则S=CD⋅BC=(2AB)BC=5BC=40则BC=8,AD=AC=故选:B.【点睛】本题考查一次函数,熟练掌握计算法则是解题关键.二、填空题(每题4分,共24分)13、x≥1.5【解析】
试题分析:首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式2x>ax+4的解集为x>.故答案为x>.考点:一次函数与一元一次不等式.14、6.5【解析】
利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.【详解】解:如图,在△ABC中,∠C=90°,AC=11,BC=5,根据勾股定理知,∵CD为斜边AB上的中线,故答案为:6.5【点睛】本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a1+b1=c1.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.15、【解析】
根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接OM、ON、MN,根据两点之间线段最短得到MN即为△PQR周长的最小值,然后证明△MON为等腰直角三角形,利用勾股定理求出MN即可.【详解】解:分别作P关于OA、OB的对称点M、N,连接OM、ON,连接MN交OA、OB交于Q、R,则△PQR符合条件且△PQR的周长等于MN,由轴对称的性质可得:OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=∠MOP+∠NOP=2∠AOB=90°,∴△MON为等腰直角三角形.∴MN=,所以△PQR周长的最小值为,故答案为:.【点睛】此题考查了轴对称最短路径问题,等腰直角三角形的判定和性质以及勾股定理,根据题意构造出对称点,转化为直角三角形的问题是解题的关键.16、1【解析】试题分析:因为函数是y关于x的正比例函数,所以,解得m=1.考点:正比例函数17、十二【解析】
根据多边形的内角和公式列方程求解即可;【详解】设这个多边形是n边形,
由题意得,(n-2)•180°=1800°,
解得n=12;故答案为十二【点睛】本题考查了多边形的内角和,关键是掌握多边形的内角和公式.18、10【解析】
根据函数图象,设y与x的函数关系式为y=kx+b,运用待定系数法即可得到函数解析式,再将x=11代入解析式就可以求出y的值.【详解】解:由图象知,y与x的函数关系为一次函数,并且经过点(1,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+1.将x=11代入一次函数解析式,故出租车费为10元.故答案为:10.【点睛】此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.三、解答题(共78分)19、(1)见解析;(2),,,【解析】
(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;(2)根据面积公式解答即可.【详解】证明:∵AD是△ABC的中线,∴BD=CD,∵AE∥BC,∴∠AEF=∠DBF,在△AFE和△DFB中,,∴△AFE≌△DFB(AAS),∴AE=BD,∴AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形;(2)∵四边形ABCE的面积为S,∵BD=DC,∴四边形ABCE的面积可以分成三部分,即△ABD的面积+△ADC的面积+△AEC的面积=S,∴面积是S的三角形有△ABD,△ACD,△ACE,△ABE.【点睛】此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.20、(1)72;(2)见解析.【解析】
(1)由得AB=CD,AD=BC,AB∥CD,则∠BAG=∠ACE,由得∠ACE+∠EAC=90°,则∠BAG+∠EAC=∠BAE=90°,由,可证得∠AFB=∠ACE,又因为BF=BC,可得BF=AC,可证△ABF≌△EAC,则AB=AE,的面积=AE∙CD=,在Rt△ABE中,由BE=12即可求得;(2)由(1)知:△ABF≌△EAC,得△EAD≌△EAC,设CE=x,则AB=CD=2x,BF=AD=x,根据面积法计算AG的长,作高线GH,利用三角函数分别得EH和GH的长,利用勾股定理计算EG的长,代入结论化简可得结论.【详解】(1)解:∵,∴AB=CD,AD=BC,AB∥CD,∴∠BAG=∠ACE,∵,∴∠ACE+∠EAC=90°,∴∠BAG+∠EAC=∠BAE=90°,∵,,∴∠AFB=∠ACE,∠AEC=∠BAE=90°,∵BF=BC,,∴BF=AC,∴△ABF≌△EAC,∴AB=AE,∴的面积=AE∙CD=,在Rt△ABE中,BE=12∴2==72,∴的面积=72;(2)证明:由(1)知:△ABF≌△EAC,
∵BF=BC=AD,
∴△EAD≌△EAC,
∴AF=DE=CE,AE=AB=2CE,
设CE=x,则AB=CD=2x,BF=AD=x,,
S△ABF=BF•AG=AF•AB,
x•AG=x•2x,
∴AG=x,
∴CG=x-x=x,
过G作GH⊥CD于H,
sin∠ECG==,
∴GH=x,
cos∠ECG==,
CH=x,
∴EH=x-x=,
∴EG===,
∴==,
∴GE=AG.故答案为(1)72;(2)见解析.【点睛】本题考查平行四边形的性质、直角三角形的判定和性质,勾股定理、三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形,熟练掌握勾股定理与三角函数定义.21、这种新混合的杂排糖的售价应该为10.1元/千克.【解析】
由扇形统计图中可以得到甲、乙、丙三种糖果所占的比例,然后根据加权平均数的计算方法求出结果即可.【详解】丙对应的百分比为1-50%-30%=20%∴这种新混合物的杂拌糖的售价应该为5×50%+12×30%+20×20%=10.1(元/千克)答:这种新混合的杂排糖的售价应该为10.1元/千克.【点睛】考查扇形统计图的特征、加权平均数的计算方法,明确和理解加权平均数中“权”是正确解答的前提.22、(1)乙车离开A城的距离y关于t的函数解析式y=100t-100;(2)乙车的速度为100km/h.【解析】
(1)根据题意和函数图象中的数据可以求得甲、乙相遇点的坐标,从而可以求出车离开A城的距离y关于t的函数解析式(2)根据(1)中的函数解析式,可以得出乙车到达终点时的时间,从而求乙车的速度。【详解】(1)由图象可得,甲车的速度为:300÷5=60km/h,当甲车行驶150km时,用的时间为:150÷60=2.5,则乙车的函数图象过点(1,0),(2.5,150),设乙车离开A城的距离y关于t的函数解析式y=kt+b,,得,即乙车离开A城的距离y关于t的函数解析式y=100t-100;(2)令y=300,则100t-100=300,解得,t=4则乙车的速度为:300÷(4-1)=100km/h.【点睛】本题考查了一次函数的应用,利用一次函数的性质和数形结合的思想进行解答。23、AC与EF互相平分,见解析.【解析】
由题意可证△ABE≌△DCF,可得∠BAE=∠DCF,即可得∠CAE=∠ACF,可证AE∥CF即可证AECF是平行四边形,可得AC与EF的关系.【详解】AC与EF互相平分∵▱ABCD∴AB∥CD,AB=CD∴∠BAC=∠ACD∵AB=CD,AE=CF,BE=DF∴△ABE≌△CDF∴∠BAE=∠FCD且∠BAC=∠ACD∴∠EAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基因编辑技术员与生物工程企业合作协议
- 患者尿管护理规范与实施
- 冬春季传染病防控指南
- 餐厅技术加盟协议书
- 被迫写下婚前协议书
- 解除劳动和解协议书
- 餐饮股东入股协议书
- 训练篮球安全协议书
- 饭堂食堂承包协议书
- 销售总监聘请协议书
- 状元展厅方案策划
- 土壤农化分析实验智慧树知到期末考试答案章节答案2024年甘肃农业大学
- 鸢飞鱼跃:〈四书〉经典导读智慧树知到期末考试答案章节答案2024年四川大学
- 空压机日常维护保养点检记录表
- MOOC 统计学-南京审计大学 中国大学慕课答案
- 中国风水滴石穿成语故事模板
- 福建省厦门市集美区2023届小升初语文试卷(含解析)
- (高清版)TDT 1001-2012 地籍调查规程
- 毛泽东诗词鉴赏
- 电机与拖动(高职)全套教学课件
- 关于开展涉密测绘成果保密的自查报告
评论
0/150
提交评论