版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省宜宾市翠屏区中学2024年八年级数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.点在第象限.A.第一象限 B.第二象限 C.第三象限 D.第四象限2.某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172,把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小 B.平均数变大,方差变大C.平均数变大,方差不变 D.平均数变大,方差变小3.甲、乙两名运动员10次比赛成绩如表,S12,S22分别表示他们测试成绩的方差,则有()8分9分10分甲(频数)424乙(频数)343A.S12>S22 B.S12=S22 C.S12<S22 D.无法确定4.下列有理式中的分式是()A.x3 B.12(x+y) C.5.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.6.在平面直角坐标系中,将正比例函数(>0)的图象向上平移一个单位长度,那么平移后的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A.(1,1) B. C. D.8.用配方法解一元二次方程,此方程可化为的正确形式是()A. B. C. D.9.△ABC中,AB=20,AC=13,高AD=12,则△ABC的周长是()A.54 B.44 C.54或44 D.54或3310.已知甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是30岁,这三个团游客年龄的方差分别是=1.4,=11.1.=25,导游小芳喜欢带游客年龄相近的团队,若要在这三个团中选择一个,则她应选()A.甲 B.乙 C.丙 D.都可以11.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠DBC的度数是()A.36° B.45° C.54° D.72°12.矩形具有而平行四边形不具有的性质是()A.对角线互相平分 B.邻角互补 C.对角相等 D.对角线相等二、填空题(每题4分,共24分)13.甲、乙两名同学的5次数学成绩情况统计结果如下表:平均分方差标准差甲8042乙80164根据上表,甲、乙两人成绩发挥较为稳定的是______填:甲或乙14.如图,将矩形绕点顺时针旋转度,得到矩形.若,则此时的值是_____.15.一组数据:24,58,45,36,75,48,80,则这组数据的中位数是_____.16.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时第一步先假设所求证的结论不成立,即问题表述为______.17.如图,在Rt△ABC中,AC=8,BC=6,直线l经过点C,且l∥AB,P为l上一个动点,若△ABC与△PAC相似,则PC=.18.如图,函数y=2x和y=ax+4的图象相交于点A(,3),则不等式2x>ax+4的解集为___.三、解答题(共78分)19.(8分)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.20.(8分)已知:实数a,b在数轴上的位置如图所示,化简:+﹣|a﹣b|.21.(8分)已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的表达式;(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x轴交点的坐标.22.(10分)小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离(千米)和所用的时间(小时)之间的函数关系如图所示。(1)小李从乙地返回甲地用了多少小时?(2)求小李出发小时后距离甲地多远?23.(10分)如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.24.(10分)如图,将正方形ABCD折叠,使点C与点D重合于正方形内点P处,折痕分别为AF、BE,如果正方形ABCD的边长是2,那么△EPF的面积是_____.25.(12分)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?26.蒙蒙和贝贝都住在M小区,在同一所学校读书.某天早上,蒙蒙7:30从M小区站乘坐校车去学校,途中停靠了两个站点才到达学校站点,且每个站点停留2分钟,校车在每个站点之间行驶速度相同;当天早上,贝贝7:38从M小区站乘坐出租车沿相同路线出发,出租车匀速行驶,结果比蒙蒙乘坐的校车早2分钟到学校站点.他们乘坐的车辆从M小区站出发所行驶路程y(千米)与校车离开M小区站的时间x(分)之间的函数图象如图所示.(1)求图中校车从第二个站点出发时点B的坐标;(2)求蒙蒙到达学校站点时的时间;(3)求贝贝乘坐出租车出发后经过多少分钟追上蒙蒙乘坐的校车,并求此时他们距学校站点的路程.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.2、D【解析】
根据平均数、中位数的意义、方差的意义,可得答案.【详解】解:原数据的平均数为×(160+165+175+163+172)=166(cm),方差为×[(160-166)2+(165-166)2+(170-166)2+(163-166)2+(172-166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165-167)2+(170-167)2+(163-167)2+(172-167)2]=11.6(cm2),所以平均数变大,方差变小,故选D.【点睛】本题考查了方差,利用平均数、中位数和方差的定义是解题关键3、A【解析】
根据题意以及图表所示,先求出甲和乙成绩的平均数,然后运用方差公式即可做出选择.【详解】由表可知,甲的成绩平均数为,乙的成绩的平均数为,所以甲的成绩的方差为,乙的方差为,所以>.故本题选择A.【点睛】本题主要考查方差公式的运用,根据图中数据,掌握方差公式即可求解.4、D【解析】
根据分式的定义逐项分析即可.【详解】A、B、C是整式;D的分母含字母,是分式.故选D.【点睛】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.5、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、D【解析】试题分析:将正比例函数y=kx(k>0)的图象向上平移一个单位得到y=kx+1(k>0),∵k>0,b=1>0,∴图象经过第一、二、三象限,不经过第四象限.故选D.考点:一次函数图象与几何变换.7、B【解析】
首先求出AB的长,进而得出EO的长,再利用含30度角的直角三角形的性质以及勾股定理进行求解即可.【详解】过E作EM⊥AC,则∠EMO=90°,∵四边形ABCD是菱形,∴AB=CD=BC=AD,AC⊥DB,∠BAO=∠BAD,∵∠BAD=60°,∴∠BAO=30°,∵AC⊥DB,∴∠BOA=90°,∵E是AB的中点,∴EO=EA=EB=AB,∵菱形ABCD的周长为16,∴AB=4,∴EO=2,∵EO=AE,∴∠EOA=∠EAO=30°,又∵∠EMO=90°,∴EM=EO=1,∴OM=∴则点E的坐标为:(,1),故选B.【点睛】本题考查了菱形的性质,坐标与图形,勾股定理,含30度角的直角三角形的性质,直角三角形斜边中线的性质,熟练掌握相关知识是解题的关键.8、D【解析】
方程常数项移到右边,两边加上9变形即可得到结果.【详解】解:方程移项得:x2-6x=-1,
配方得:x2-6x+9=8,即(x-3)2=8,
故选D.【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.9、C【解析】
根据题意画出示意图进行分析判断,然后根据勾股定理计算出底边BC的长,最后求和即可.【详解】(1)在直角三角形ACD中,有在直角三角形ADB中,有则CB=CD+DB=5+16=21所以三角形的面积为CB+AC+AB=21+13+20=54.(2)在直角三角形ACD中,有在直角三角形ADB中,有则CB=DB-CD=16-5=11所以三角形的面积为CB+AC+AB=11+13+20=44.故答案为:D.【点睛】本题考查了勾股定理的应用,解题关键在于以高为突破点把三角形分为高在三角形内部和外部的两种情况.10、A【解析】分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.详解:∵S甲2=1.4,S乙2=11.1,S丙2=25,∴S甲2<S乙2<S丙2,∴游客年龄最相近的团队是甲.故选A.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11、A【解析】
由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.【详解】解:设∠A=x°,∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠C=∠BDC=72°,∴∠DBC=36°,故选:A.【点睛】此题考查了等腰三角形的性质;熟练掌握等腰三角形的性质,以及三角形内角和定理,得到各角之间的关系式解答本题的关键.12、D【解析】
根据矩形相对于平行四边形的对角线特征:矩形的对角线相等,求解即可.【详解】解:由矩形对角线的特性可知:矩形的对角线相等.故选:D.【点睛】本题考查的知识点是矩形的性质以及平行四边形的性质,掌握矩形以及平行四边形的边、角、对角线的性质是解此题的关键.二、填空题(每题4分,共24分)13、甲【解析】
根据方差的定义,方差越小数据越稳定.【详解】∵S甲2=4,S乙2=16,∴S甲2=4<S乙2=16,∴成绩稳定的是甲,故答案为:甲.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、60°或300°【解析】
由“SAS”可证△DCG≌△ABG,可得CG=BG,由旋转的性质可得BG=BC,可得△BCG是等边三角形,即可求解.【详解】解:如图,连接,∵四边形ABCD是矩形,∴CD=AB,∠DAB=∠ADC=90°,∵DG=AG,∴∠ADG=∠DAG,∴∠CDG=∠GAB,且CD=AB,DG=AG,∴△DCG≌△ABG(SAS),∴CG=BG,∵将矩形ABCD绕点B顺时针旋转α度(0°<α<360°),得到矩形BEFG,∴BC=BG,∠CBG=α,∴BC=BG=CG,∴△BCG是等边三角形,∴∠CBG=α=60°,同理当G点在AD的左侧时,△BCG仍是等边三角形,Α=300°故答案为60°或300°.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,证明△BCG是等边三角形是本题的关键.15、1【解析】
把给出的此组数据中的数按一定的顺序排列,由于数据个数是7,7是奇数,所以处于最中间的数,就是此组数据的中位数;【详解】按从小到大的顺序排列为:2436451587580;
所以此组数据的中位数是1.【点睛】此题主要考查了中位数的意义与求解方法.16、假设在直角三角形中,两个锐角都大于45°.【解析】
反证法的第一步是假设命题的结论不成立,据此可以得出答案.【详解】∵反证法的第一步是假设命题的结论不成立,∴用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时第一步即为,假设在直角三角形中,两个锐角都大于45°.【点睛】此题主要考查了反证法的知识,解此题的关键是掌握反证法的意义和步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)由矛盾说明假设错误,从而证明原命题正确.17、6.1或2【解析】分类讨论:(1)当∠PCA=90°时,不成立;(2)∵Rt△ABC中,AC=8,BC=6,∴AB=2,当∠APC=90°时,∵∠PCA=∠CAB,∠APC=∠ACB,∴△CPA∽△ACB,∴=,∴=,∴PC=6.1.(3)当∠CAP=90°时,∵∠ACB=∠CAP=90°,∠PCA=∠CAB,∴△PCA∽△BAC,∴=,∴PC=AB=2.故答案为:6.1或2.点睛:(1)求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形,根据未知三角形中已知边与已知三角形的可能对应分类讨论;(2)或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小;(3)若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式表示各边的长度,之后利用相似列方程求解.18、x>【解析】
由于函数y=2x和y=ax+4的图象相交于点A(),观察函数图象得到当x>时,函数y=2x的图象都在y=ax+4的图象上方,所以不等式2x>ax+4的解集为x>.【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(),∴当x>时,2x>ax+4,即不等式2x>ax+4的解集为x>.故答案为:x>.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共78分)19、(1)k=;(2)解析式为y=2x﹣2.【解析】试题分析:(1)根据L1⊥L2,则k1·k2=﹣1,可得出k的值即可;(2)根据直线互相垂直,则k1·k2=﹣1,可得出过点A直线的k等于2,得出所求的解析式即可.试题解析:解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+2垂直,∴设过点A直线的直线解析式为y=2x+b,把A(2,2)代入得,b=﹣2,∴解析式为y=2x﹣2.20、-2【解析】
本题运用实数与数轴的对应关系确定-2<a<-1,1<b<2,且b>a,然后根据开方运算的性质和绝对值的意义化简即可求解.【详解】由数轴上点的位置关系,得-2<a<-1,1<b<2,∴a+1<0,b-1>0,a-b<0,∴=|a+1|+|b-1|-|a-b|,=-a-1+b-1+a-b,=-2【点睛】本题主要考查了利用数轴比较两个数的大小和二次根式的化简,解答本题的关键是掌握绝对值的性质.21、(1)y=x-4.(2)(-4,0).【解析】
(1)把点(2,-3)代入解析式即可求出k;(2)先得出函数图像向上平移6单位的函数关系式,再令y=0,即可求出与x轴交点的坐标.【详解】解:(1)将x=2,y=-3代入y=kx-4,得-3=2k-4.∴k=.∴一次函数的表达式为y=x-4.(2)将y=x-4的图像向上平移6个单位长度得y=x+2.当y=0时,x=-4.∴平移后的图像与x轴交点的坐标为(-4,0).【点睛】此题主要考察一次函数的解析式的求法与在坐标轴方向上的平移.22、(1)小时;(2)小李出发小时后距离甲地千米;【解析】
(1)根据题意可以得到小李从乙地返回甲地用了多少小时;(2)根据题意可以求得小李返回时对应的函数解析式,从而可以求得小李出发5小时后距离甲地的距离;【详解】解:(1)由题意可得,(小时),答:小李从乙地返回甲地用了小时;(2)设小李返回时直线解析式为,将分别代入得,,解得,,,当时,,答:小李出发小时后距离甲地千米;【点睛】此题考查一次函数的应用,解题关键在于列出方程23、(1)t=3,ABQP是矩形;(2)t=,AQCP是菱形;(3)周长为:15cm,面积为:(cm2).【解析】
(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;
(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;
(3)菱形的四条边相等,则菱形的周长=4AQ,面积=CQ×AB.【详解】解:(1)由已知可得,BQ=DP=t,AP=CQ=6-t
在矩形ABCD中,∠B=90°,AD∥BC,
当BQ=AP时,四边形ABQP为矩形,
∴t=6-t,得t=3
故当t=3s时,四边形ABQP为矩形.
(2)AD∥BC,AP=CQ=6-t,∴四边形AQCP为平行四边形
∴当AQ=CQ时,四边形AQCP为菱形
即=6−t时,四边形AQCP为菱形,解得t=,
故当t=s时,四边形AQCP为菱形.
(3)当t=时,AQ=,CQ=,
则周长为:4AQ=4×=15cm
面积为:CQ•AB=×3=.【点睛】本题考查菱形、矩形的判定与性质.注意结合方程的思想解题.24、【解析】
过P作PH⊥DC于H,交AB于G,由正方形的性质得到AD=AB=BC=DC=2;∠D=∠C=90°;再根据折叠的性质有PA=PB=2,∠FPA=∠EPB=90°,可判断△PAB为等边三角形,利用等边三角形的性质得到∠APB=60°,,于是∠EPF=10°,PH=HG﹣PG=2﹣,得∠HEP=30°,然后根据含30°的直角三角形三边可求出HE,得到EF,最后利用三角形的面积公式计算即可.【详解】解:过P作PH⊥DC于H,交AB于G,如图,则PG⊥AB,∵四边形ABCD为正方形,∴AD=AB=BC=DC=2;∠D=∠C=90°,又∵将正方形ABCD折叠,使点C与点D重合于形内点P处,∴PA=PB=2,∠FPA=∠EPB=90°,∴△PAB为等边三角形,∴∠APB=60°,PG=AB=,∴∠EPF=10°,PH=HG﹣PG=2﹣,∴∠HEP=30°,∴HE=PH=(2﹣)=2﹣3,∴EF=2HE=4﹣6,∴△EPF的面积=FE•PH=(2﹣)(4﹣6)=7﹣1.故答案为7﹣1.【点睛】本题考查了折叠的性质:折叠前后的两图形全等,即对应角相等,对应线段相等.也考查了正方形和等边三角形的性质以及含30°的直角三角形三边的关系.25、(1)14000,13200;(2)y=60x+1.(3)200.【解析】
试题分析:(1)方案一中,总费用y=8000+50x,代入x=120求得答案;由图可知方案二中,当x=120时,对应的购票总价为13200元;(2)分段考虑当0<x≤100时,当x≥100时,设出一次函数解析式,把其中两点的坐标代入即可求得相应的函数解析式;(3)由(1)(2)的解析式建立不等式,求得答案即可.试题解析:(1)若购买120张票时,方案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水箱槽子放心采购合同范例
- 消费者合同范例
- 试驾车合同范例
- 电瓶车架租赁合同模板
- 购买祖厝合同范例
- 购买安装产品合同模板
- 挂车定做 合同范例
- 超市雇人合同范例
- 设计类合同范例
- 建筑工程合同争议调解书
- -人教版八年级英语上册Unit-9-Can-you-come-to-my-party课件
- 初中语文人教七年级上册群文阅读 -
- 科幻小说赏读知到章节答案智慧树2023年杭州师范大学
- 2024年企业经营工作计划10篇
- 跨国公司跨文化管理课程
- 民用无人机驾驶员训练手册
- 建设工程质量检测和建筑材料试验收费项目及标准指导性
- 连续型随即变量
- 危废培训心得(一)(3篇)
- GB/T 33718-2017企业合同信用指标指南
- 抱抱“暴暴”应对负面情绪 课件 高中心理健康
评论
0/150
提交评论