版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州市星港中学2024届中考数学押题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定2.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135° B.120° C.60° D.45°3.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个4.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为()A.120° B.110° C.100° D.80°5.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)6.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣67.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根8.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130° B.120° C.110° D.100°9.一元二次方程x2﹣2x=0的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣210.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A. B. C.9 D.11.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是S甲2=A.甲 B.乙 C.甲乙同样稳定 D.无法确定12.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式2x2﹣4x+2的最终结果是_____.14.计算:-=________.15.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.16.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=___________°.17.若xay与3x2yb是同类项,则ab的值为_____.18.观察下列各等式:……根据以上规律可知第11行左起第一个数是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.20.(6分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:类(),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:类学生有人,补全条形统计图;类学生人数占被调查总人数的%;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在中的概率.21.(6分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.(1)求证:;(2)若,求tan∠CED的值.22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.(8分)计算:.24.(10分)已知抛物线y=ax2+(3b+1)x+b﹣3(a>0),若存在实数m,使得点P(m,m)在该抛物线上,我们称点P(m,m)是这个抛物线上的一个“和谐点”.(1)当a=2,b=1时,求该抛物线的“和谐点”;(2)若对于任意实数b,抛物线上恒有两个不同的“和谐点”A、B.①求实数a的取值范围;②若点A,B关于直线y=﹣x﹣(+1)对称,求实数b的最小值.25.(10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.26.(12分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:()请补全上面的条形图.()所抽查学生“诵读经典”时间的中位数落在__________级.()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?27.(12分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.(1)①已知O为坐标原点,点,,则_________,_________;②点C在直线上,求出的最小值;(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
根据正比例函数的增减性解答即可.【详解】∵正比例函数y=﹣k2x(k≠0),﹣k2<0,∴该函数的图象中y随x的增大而减小,∵点M(﹣3,y1),N(﹣4,y2)在正比例函数y=﹣k2x(k≠0)图象上,﹣4<﹣3,∴y2>y1,故选:A.【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时,y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时,y=kx的图象经过二、四象限,y随x的增大而减小.2、B【解析】
易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选B.【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.3、C【解析】
利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正确,故选C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.4、D【解析】
先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5、B【解析】连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移2.∵3=336×6+1,∴点B1向右平移1322(即336×2)到点B3.∵B1的坐标为(1.5,),∴B3的坐标为(1.5+1322,),故选B.点睛:本题是规律题,能正确地寻找规律“每翻转6次,图形向右平移2”是解题的关键.6、D【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】解:0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.故选D.7、C【解析】
解:由题意可知4的算术平方根是2,4的立方根是<2,8的算术平方根是,2<<3,8的立方根是2,
故根据数轴可知,
故选C8、D【解析】分析:先根据圆内接四边形的性质得到然后根据圆周角定理求详解:∵∴∴故选D.点睛:考查圆内接四边形的性质,圆周角定理,掌握圆内接四边形的对角互补是解题的关键.9、C【解析】
方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故选C.【点睛】考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.10、A【解析】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.11、A【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙两名同学成绩更稳定的是甲;故选A.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、B【解析】
本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】①若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.【点睛】掌握分类讨论的方法是本题解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1(x﹣1)1【解析】
先提取公因式1,再根据完全平方公式进行二次分解.【详解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1.故答案为:1(x﹣1)1【点睛】本题考查提公因式法与公式法的综合运用,难度不大.14、2【解析】试题解析:原式故答案为15、2【解析】试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考点:1折叠问题;2勾股定理;1相似三角形.16、1【解析】∵在△ABC中,AB=BC,∠ABC=110°,
∴∠A=∠C=1°,
∵AB的垂直平分线DE交AC于点D,
∴AD=BD,
∴∠ABD=∠A=1°;
故答案是1.17、2【解析】试题解析:∵xay与3x2yb是同类项,∴a=2,b=1,则ab=2.18、-1.【解析】
观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一个数比右侧的数大一,∴第11行左起第一个数是-1.【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).【解析】试题分析:把点的坐标代入即可求得抛物线的解析式.作BH⊥AC于点H,求出的长度,即可求出∠ACB的度数.延长CD交x轴于点G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直线的方程,和抛物线的方程联立即可求得点的坐标.试题解析:(1)由题意,得解得.∴这条抛物线的表达式为.(2)作BH⊥AC于点H,∵A点坐标是(-1,0),C点坐标是(0,3),B点坐标是(,0),∴AC=,AB=,OC=3,BC=.∵,即∠BAD=,∴.Rt△BCH中,,BC=,∠BHC=90º,∴.又∵∠ACB是锐角,∴.(3)延长CD交x轴于点G,∵Rt△AOC中,AO=1,AC=,∴.∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.∴AG=CG.∴.∴AG=1.∴G点坐标是(4,0).∵点C坐标是(0,3),∴.∴解得,(舍).∴点D坐标是20、(1)5;(2)36%;(3).【解析】试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数=,进行求解即可;(3)利用列举法求概率即可.试题解析:(1)E类:50-2-3-22-18=5(人),故答案为:5;补图如下:(2)D类:1850×100%=36%,故答案为:36%;(3)设这5人为有以下10种情况:其中,两人都在的概率是:.21、(1)见解析;(2)tan∠CED=【解析】
(1)欲证明,只要证明即可;(2)由,可得,设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,由,可得BD•BE=BC•BA,设AC=BC=x,则有,由此求出AC、CD即可解决问题.【详解】(1)证明:如下图,连接AE,∵AD是直径,∴,∴DC⊥AB,∵AC=CB,∴DA=DB,∴∠CDA=∠CDB,∵,,∴∠BDC=∠EAC,∵∠AEC=∠ADC,∴∠EAC=∠AEC,∴;(2)解:如下图,连接OC,∵AO=OD,AC=CB,∴OC∥BD,∴,∴,设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,∵∠BAD=∠BEC,∠B=∠B,∴,∴BD•BE=BC•BA,设AC=BC=x,则有,∴,∴,∴,∴.【点睛】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.22、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.【解析】
(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.【详解】(1)①如图1,,反比例函数为,当时,,,当时,,,,设直线的解析式为,,,直线的解析式为;②四边形是菱形,理由如下:如图2,由①知,,轴,,点是线段的中点,,当时,由得,,由得,,,,,,四边形为平行四边形,,四边形是菱形;(2)四边形能是正方形,理由:当四边形是正方形,记,的交点为,,当时,,,,,,,,,,.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.23、【解析】【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【详解】原式===.【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.24、(1)()或(﹣1,﹣1);(1)①2<a<17②b的最小值是【解析】
(1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;(1)抛物线上恒有两个不同的“和谐点”A、B.则关于m的方程m=am1+(3b+1)m+b-3的根的判别式△=9b1-4ab+11a.①令y=9b1-4ab+11a,对于任意实数b,均有y>2,所以根据二次函数y=9b1-4ab+11的图象性质解答;②利用二次函数图象的对称性质解答即可.【详解】(1)当a=1,b=1时,m=1m1+4m+1﹣4,解得m=或m=﹣1.所以点P的坐标是(,)或(﹣1,﹣1);(1)m=am1+(3b+1)m+b﹣3,△=9b1﹣4ab+11a.①令y=9b1﹣4ab+11a,对于任意实数b,均有y>2,也就是说抛物线y=9b1﹣4ab+11的图象都在b轴(横轴)上方.∴△=(﹣4a)1﹣4×9×11a<2.∴2<a<17.②由“和谐点”定义可设A(x1,y1),B(x1,y1),则x1,x1是ax1+(3b+1)x+b﹣3=2的两不等实根,.∴线段AB的中点坐标是:(﹣,﹣).代入对称轴y=x﹣(+1),得﹣=﹣(+1),∴3b+1=+a.∵a>2,>2,a•=1为定值,∴3b+1=+a≥1=1,∴b≥.∴b的最小值是.【点睛】此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点.25、(1)y=﹣x2﹣2x+1;(2)(﹣,)【解析】
(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,△PDE的周长也最大.将x=-代入-x2-2x+1,进而得到P点的坐标.【详解】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周长越大.设直线AB的解析式为y=kx+b,则,解得,即直线AB的解析式为y=x+1.设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,所以当x=﹣时,PE最大,△PDE的周长也最大.当x=﹣时,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,即点P坐标为(﹣,)时,△PDE的周长最大.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度特许经营合同详细条款解析3篇
- 2024年度商场促销灯光音响设备租赁合同
- 2024年度网站建设维护合同
- 2024年度机场航站楼瓷砖铺设合同
- 2024年度建筑装饰门窗安装合同
- 2024年度信息技术服务合同标的及技术支持具体规定
- 2024年度煤矿煤质检测与分析合同
- 2024年度特许经营合同:连锁品牌加盟合作3篇
- 2024年度大型设备安装与维护合同2篇
- 2024年度版权转让合同:某作家与出版社图书出版权转让协议
- 2024至2030年工业软件系列专题之中国先进过程控制(APC)产业链全景与机会洞察专题研究报告
- 《无人机法律法规知识》课件-第1章 民用航空法概述
- 三年级上册数学教案-第八单元 分数的初步认识 西师大版
- 全国职业院校技能大赛高职组(酒水服务赛项)备赛试题库(含答案)
- 北京市工商行政管理系统2024年面向应届毕业生公开招聘事业单位工作人员历年(高频重点复习提升训练)共500题附带答案详解
- 2024年医师定期考核必刷题库附含参考答案
- 经外周静脉穿刺中心静脉置管(PICC)操作技术专家共识解读
- 2024年大学生安全知识竞赛考试题库500题(含答案)
- 2024数据中心浸没式液冷系统单相冷却液技术指标和测试方法
- 学科辅导与个性化学习计划三篇
- 网课智慧树知道《生理学(宁波大学)》章节测试答案
评论
0/150
提交评论